• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Targeted photosensitizers and controlled singlet oxygen generation for therapeutic applications

      Thumbnail
      Embargo Lift Date: 2019-07-14
      View / Download
      7.3 Mb
      Author(s)
      Uçar, Esma
      Advisor
      Akkaya, Engin Umut
      Date
      2018-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      356
      views
      184
      downloads
      Abstract
      Photodynamic therapy of cancer plays a pivotal role due to its many superior features and potential. Considering the pathways for improving the practice of PDT of cancer is gradually increasing, enhancing the selectivity of photodynamic action is an obvious choice. Being the source of reactive oxygen species in the body, mitochondrion is one of the most proper organelles to target. There is plethora of findings suggesting that triphenlyphosphonium cation is a very favorable mitochondria targeting agent. Another aspect of PDT requires creation of smart molecules which respond to either the increased temperature or ion concentrations in order to release 1O2. Cyclic endoperoxides of naphthalene and anthracene could help in achieving the desired objective of storing 1O2 and regenerating it again when appropriate conditions meet. The half-life cycloreversion of 1,4-Dimethylnaphthalene could be changed at least 100-fold when 2-position of the naphthalene is sterically hindered. Taking advantage of the fact that fluoride ions’ silicophile nature, a novel perspective for drug design can be proposed. In the final project, a certain level magnetic hyperthermia, large enough to cause endoperoxide cycloreversion, but not large enough to cause necrotic death, is being sought after. Controlled generation singlet oxygen by the application of tissue penetrating alternating magnetic fields is the ultimate goal for that project.
      Keywords
      PDT
      Mitochondria
      Magnetic Fluid Hyperthermia
      Endoperoxide
      Permalink
      http://hdl.handle.net/11693/48244
      Collections
      • Dept. of Chemistry - Master's degree 147
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy