• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Development and characterization of a direct detection fiber optic distributed acoustic sensor

      Thumbnail
      Embargo Lift Date: 2020-07-15
      View / Download
      4.1 Mb
      Author
      Uyar, Faruk
      Advisor
      Özbay, Ekmel
      Date
      2018-09
      Publisher
      Bilkent University
      Language
      en_US
      Type
      Thesis
      Item Usage Stats
      145
      views
      88
      downloads
      Abstract
      Phase-sensitive optical time domain re ectometer (ø-OTDR) based distributed acoustic sensor (DAS) systems have attracted increasing attention in recent years due to their remarkable advantages in a wide range of industrial and military applications such as health monitoring and security of civil infrastructures, railways, oil and gas pipelines, borders, and so on. They measure vibrations and detect perturbations along a section of fiber. Different approaches have been adopted to realize the ø-OTDR systems and process the data from these sensors. In this thesis, a direct detection DAS based on ø-OTDR architecture with long sensing range and high signal-to-noise ratio (SNR) is demonstrated. Testing and characterization of critical system components is conducted before integrating them into the system. The results of laboratory tests are presented, in which the detected traces are successively analyzed in order to localize and investigate the perturbation events along the test fibers. The field tests are demonstrated with different external events such as digging, walking, and motor vibration. Considering the random nature of Rayleigh backscattered light and fading effect encountered in these tests, a new performance metric, which is Mean SNR, is proposed for assessing and comparing the system performances. Besides, statistical characteristics of the SNR of the vibration events in different distances for both laboratory tests and field tests is experimentally measured. The photon statistics of Rayleigh backscattered signal in a ø-OTDR based fiber sensor in the presence of amplified spontaneous emission noise is theoretically modeled and experimentally demonstrated, as well.
      Keywords
      Distributed Acoustic Sensor
      Optical Time Domain Reflectometer
      ø-OTDR
      Rayleigh Scattering
      Fading
      Fiber Optics
      Permalink
      http://hdl.handle.net/11693/48031
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 596
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy