• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optical and thermal dynamics of long wave quantum cascade lasers

      Thumbnail
      View / Download
      14.2 Mb
      Author
      Gündoğdu, Sinan
      Advisor
      Gülseren, Oğuz
      Date
      2018-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      141
      views
      247
      downloads
      Abstract
      Quantum Cascade Lasers (QCLs) are coherent light sources that make use of intraband transitions of wavefunction engineered semiconductor quantum wells. They have been designed to emit light in a wide spectral range; from mid-wave infrared to terahertz. Long wave QCLs are a subject of interest for some applications such as remote detection of harmful chemicals. These applications demand higher optical powers at room temperature. In this thesis we demonstrate simulation, design, fabrication and characterization of long-wave QCLs that emit light around 9.2 m. To increase optical power and enhance thermal performance, we explore the optical and thermal properties of QCLs. Thermal characteristics of QCLs are analyzed by nite element methods. We developed a spectral technique that relies on analysis of Fabry-Perot modes to measure cavity temperatures experimentally. By combining the simulations and experimental results we scrutinized the thermal properties of QCLs, and estimated the active region thermal conductivity. To increase the optical power, we conducted optical calculations and investigated the sources of loss. As a result of a search for alternative electrical passivation materials, we fabricated HfO2 passivated lasers and demonstrated about to two-fold reduction in optical loss and increase in optical power.
      Keywords
      Quantum Cascade Lasers
      Semiconductor Lasers
      Permalink
      http://hdl.handle.net/11693/47896
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 73
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy