• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Large-scale semi-empirical pseudopotential electronic structure of self-assembled ingaas quantum dots

      Thumbnail
      Embargo Lift Date: 2019-03-17
      View / Download
      4.3 Mb
      Author
      Kahraman, Mustafa
      Advisor
      Bulutay, Ceyhun
      Date
      2018-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      146
      views
      69
      downloads
      Abstract
      The so-called second quantum revolution emerged at the beginning of the second millennium, opening up a path to realization of spin-qubit-based quantum computing by means of controlling and protecting quantum coherent processes. Thus, along this spirit, the self-assembled quantum dots (SAQD) made a transition from conventional optoelectronic devices to spin-qubit applications. One specific problem that can benefit from this is the electron spin resonance (ESR) of a single-electron in a SAQD which could not be reproduced after its demonstration for more than ten years. The lack of insight for the electronic structure of SAQDs and g-factors changing with its properties might be the underlying reason for the decade-old puzzle. Towards the goal of understanding the ESR, atomistic large-scale semi-empirical electronic structures of InGaAs SAQDs having different shapes, sizes and indium concentrations are calculated using linear combination of bulk bands method. Two approaches to extract envelopes of the wave functions are demonstrated since the resulting wave functions have the fast uctuations and understanding them might not be always possible. Calculated electronic structures and wave functions are compared and were found to be in agreement with the general theoretical and experimental findings paving the way to the calculation of g-factors in accordance with our eventual aim.
      Keywords
      InGaAs Quantum Dots
      Electronic Structure
      Semi-Empirical Pseudopotential
      Linear Combination Of Bulk Bands
      Permalink
      http://hdl.handle.net/11693/47889
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy