• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Accelerating the understanding of life's code through better algorithms and hardware design

      Thumbnail
      View / Download
      10.1 Mb
      Author
      Alser, Mohammed H. K.
      Advisor
      Alkan, Can
      Date
      2018-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      922
      views
      352
      downloads
      Abstract
      Our understanding of human genomes today is affected by the ability of modern computing technology to quickly and accurately determine an individual's entire genome. Over the past decade, high throughput sequencing (HTS) technologies have opened the door to remarkable biomedical discoveries through its ability to generate hundreds of millions to billions of DNA segments per run along with a substantial reduction in time and cost. However, this ood of sequencing data continues to overwhelm the processing capacity of existing algorithms and hardware. To analyze a patient's genome, each of these segments - called reads - must be mapped to a reference genome based on the similarity between a read and \candidate" locations in that reference genome. The similarity measurement, called alignment, formulated as an approximate string matching problem, is the computational bottleneck because: (1) it is implemented using quadratic-time dynamic programming algorithms, and (2) the majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candidate locations consumes an overwhelming majority of a modern read mapper's execution time. Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate locations and eliminate them before invoking computationally costly alignment algorithms. In this thesis, we introduce four new algorithms that function as a prealignment step and aim to filter out most incorrect candidate locations. We call our algorithms GateKeeper, Slider, MAGNET, and SneakySnake. The first key idea of our proposed pre-alignment filters is to provide high filtering accuracy by correctly detecting all similar segments shared between two sequences. The second key idea is to exploit the massively parallel architecture of modern FPGAs for accelerating our four proposed filtering algorithms. We also develop an efficient CPU implementation of the SneakySnake algorithm for commodity desktops and servers, which are largely available to bioinformaticians without the hassle of handling hardware complexity. We evaluate the benefits and downsides of our pre-alignment filtering approach in detail using 12 real datasets across different read length and edit distance thresholds. In our evaluation, we demonstrate that our hardware pre-alignment filters show two to three orders of magnitude speedup over their equivalent CPU implementations. We also demonstrate that integrating our hardware pre-alignment filters with the state-of-the-art read aligners reduces the aligner's execution time by up to 21.5x. Finally, we show that efficient CPU implementation of pre-alignment filtering still provides significant benefits. We show that SneakySnake on average reduces the execution time of the best performing CPU-based read aligners Edlib and Parasail, by up to 43x and 57.9x, respectively. The key conclusion of this thesis is that developing a fast and efficient filtering heuristic, and developing a better understanding of its accuracy together leads to significant reduction in read alignment's execution time, without sacrificing any of the aligner' capabilities. We hope and believe that our new architectures and algorithms catalyze their adoption in existing and future genome analysis pipelines.
      Keywords
      Read Mapping
      Approximate String Matching
      Read Alignment
      Levenshtein Distance
      String Algorithms
      Edit Distance
      Fast Pre-Alignment Filter
      Field-Programmable Gate Arrays (FPGA)
      Permalink
      http://hdl.handle.net/11693/47878
      Collections
      • Dept. of Computer Engineering - Ph.D. / Sc.D. 75
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy