• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deep learning based cell segmentation in histopathological images

      Thumbnail
      View / Download
      5.3 Mb
      Author
      Doğan, Deniz
      Advisor
      Demir, Çiğdem Gündüz
      Date
      2018-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      204
      views
      287
      downloads
      Abstract
      In digital pathology, cell imaging systems allow us to comprehend histopathological events at the cellular level. The first step in these systems is generally cell segmentation, which substantially affects the subsequent steps for an effective and reliable analysis of histopathological images. On the other hand, cell segmentation is a challenging task in histopathological images where there are cells with different pixel intensities and morphological characteristics. The approaches that integrate both pixel intensity and morphological characteristics of cells are likely to achieve successful segmentation results. This thesis proposes a deep learning based approach for a reliable segmentation of cells in the images of histopathological tissue samples stained with the routinely used hematoxylin and eosin technique. This approach introduces two stage convolutional neural networks that employ pixel intensities in the first stage and morphological cell features in the second stage. The proposed TwoStageCNN method is based on extracting cell features, related to cell morphology, from the class labels and posteriors generated in the first stage and uses the morphological cell features in the second stage for the final segmentation. We evaluate the proposed approach on 3428 cells and the experimental results show that our approach yields better segmentation results compared to different segmentation techniques.
      Keywords
      Deep Learning
      Convolutional Neural Networks
      Cell Segmentation
      Histopathological Image Analysis
      Permalink
      http://hdl.handle.net/11693/47753
      Collections
      • Dept. of Computer Engineering - Master's degree 516
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy