• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A self-actuated cellular protein delivery machinery

      Thumbnail
      Embargo Lift Date: 2021-08-08
      View / Download
      7.9 Mb
      Author(s)
      Ahan, Recep Erdem
      Advisor
      Şeker, Urartu Özgür Şafak
      Date
      2018-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      171
      views
      0
      downloads
      Abstract
      Owing to increase the knowledge on biology and available tools for genetic manipulations, biological systems are engineered to perform complex tasks. They can be designed to degrade toxic molecules in environment, produce and deliver complex biological drugs, or process and synthesize valuable materials. Hence, the cellular machines hold great promises to solve world problems such as global warming, world hunger, cancer and so forth. However, most of the complex tasks require protein release to extracellular space in a controlled manner. Development of efficient cellular machines is hampered by lack of convenient strategy for controlled protein release as many of proposed secretion systems are limited in a narrow focused application. In this thesis, we are proposing a novel bifunctional self-exciting protein delivery system for broader applications. The proposed protein delivery machine harbours a genetic circuit that is able to display protein-of-interest on cell surface and to secrete to extracellular space in case of need. To do so, we engineered the autotransporter protein Ag43 to display POI with TEV protease recognition site on the cell surface of Escherichia coli (E. coli). The release of displayed POI was achieved and systematically optimized in vitro via addition of purified TEV protease. To accomplish the self-exciting and controlled release of POI by cells, TEV protease was aimed to be expressed and translocated to extracellular space to cleave the recognition site between POI and Ag43 protein. Four different secretion strategies was employed to secrete TEV protease to extracellular space. While cleavage of POI from cell surface can’t be accomplished through secretion of TEV protease by type I system, YebF fusion, and co-expressing lysis gene, codisplaying TEV protease on the cell surface can release the POI. Our data revealed that release of POI can be tuned with controlling the amount of TEV protease on the cell surface. Considering the simplicity of protein display as well as ability to express Ag43 protein in various organisms, the proposed system can be implemented in more complex genetic circuits and used in diverse applications.
      Keywords
      Protein Secretion
      Cellular Machines
      Autotransporter Protein
      Protein Display
      TEV Protease
      Permalink
      http://hdl.handle.net/11693/47738
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 146
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy