Code design for energy harvesting and Joint energy and information transfer Using run length limited codes
Author
Özateş, Mert
Advisor
Duman, Tolga Mete
Date
2018-07Publisher
Bilkent University
Language
English
Type
ThesisItem Usage Stats
146
views
views
419
downloads
downloads
Abstract
Energy harvesting wireless networks and networks that bene t from wireless
energy transfer have become popular in the last decade. In these networks, the
users can obtain the required energy for transmission from an external source,
which eliminates the need of battery replacement. Therefore, such networks have
a high potential for applications in different areas including wireless sensor networks,
wireless body networks and Internet of Things (IoT). While there have
been many advancements for energy harvesting communications and joint energy
and information transfer from information and communication theoretic perspectives
in the literature, these subjects have not been studied from a practical
coding and transmission point of view in depth.
With the above motivation, in this thesis, we propose a serially concatenated
coding scheme to communicate over binary energy harvesting communication
channels with additive white Gaussian noise (AWGN), and design explicit and
implementable codes for both long and short block lengths. Run length limited
(RLL) codes are used to induce the required nonuniform input distributions for
both cases. We employ low density parity check (LDPC) codes for long block
lengths, while for short block length designs, we utilize convolutional codes for
error correction. We consider different decoding approaches for the two cases,
i.e., an iterative decoder is used for the former while Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm over the product trellis of the convolutional and run length
limited codes is used for the latter. Also, by noticing that similar coding solutions
can be employed, we extend our work to joint energy and information transfer
for both scenarios. Numerical examples demonstrate that the newly optimized
codes with an inner RLL code are superior to the point-to-point optimal codes
for AWGN channels for long block lengths when energy harvesting or joint energy
and information transfer is considered, and that, for the short block length case,
concatenated convolutional and RLL codes with higher minimum distances offer
excellent performance.
Keywords
Energy HarvestingRun Length Limited Codes
Low Density Parity-Check Codes
Joint Energy And Information Ttransfer
Short Block Length Codes
Convolutional Codes