• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Interpolation of ionospheric modalities using kriging, co-kriging and spatio-temporal kriging

      Thumbnail
      View / Download
      1.8 Mb
      Author
      Khaf, Sadia
      Advisor
      Arıkan, Orhan
      Date
      2018-06
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      118
      views
      23
      downloads
      Metadata
      Show full item record
      Abstract
      Long distance communication and navigation systems operating in the HF band use interacting signals as they travel through the ionosphere. It is important to accurately model ionospheric behavior to increase the performance of these systems. Delays occurring in the signals depend on the refrectivity which is a function of frequency of the signals, and the electron density on the signal path at the time of propagation. Depending on the change in the solar activities, the electron distribution in the ionosphere changes spatially and temporally. The change in ionosphere can be tracked by various parameters and the space-time distribution of these parameters. Total Electron Content (TEC), the total number of electrons in a cylinder with one meter square cross-sectional area over a ray path is used as an important descriptor for the ionosphere. It is possible to generate TEC maps with high spatial resolution using the information obtained by processing the GPS satellite signals by constantly operating reference stations (CORS) GPS receivers. In particular, there are two other parameters that are used in HF communication and direction nding applications: foF2, which is the highest plasma frequency of foF2 layer, and hmF2, which is the height of maximum ionization. Sensitive foF2 and hmF2 measurements can be made by ionosonde systems. However, these systems are highly sparser than TEC measurements. For this reason, the resolution of the foF2 and hmF2 maps is less than the TEC maps. In this study, we propose a space-time mapping technique based on Co-Kriging which is used in conjunction with TEC data, that is correlated to these parameters, to increase the resolutions of foF2 and hmF2 maps. The performance of the proposed technique is compared with the alternatives and the increase in performance achieved is described statistically.
      Keywords
      Ionosphere
      TEC
      Kriging
      Co-Kriging
      Spatio-temporal Kriging
      Embargo Lift Date
      2019-08-31
      Permalink
      http://hdl.handle.net/11693/47662
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 567

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin