• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Spatiotemporal nonlinear dynamics in graded-index multimode fibers

      Thumbnail
      View / Download
      6.3 Mb
      Author
      Teğin, Uğur
      Advisor
      Ortaç, Bülent
      Date
      2018-05
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      502
      views
      508
      downloads
      Abstract
      Spatiotemporal pulse propagation in multimode fibers is generally considered as chaotic. Graded-index multimode fibers reduce the complexity due to its equal spacing of the modal wave numbers which also introduces a periodic self-imaging to the propagating beam. This unique phenomenon affects the coupling between the modes thus graded-index multimode fibers are an ideal testbed to study spatiotemporal pulse propagation. In this thesis, various spatiotemporal nonlinear dynamics studied in graded-index multimode fibers to achieve wavelength conversion, supercontinuum generation triggered by cascaded Raman scattering and to develop a novel all-fiber all-normal dispersion mode-locked laser cavity. In normal dispersion regime, spatiotemporal instability of femtosecond pulses discovered numerically and experimentally by exciting a graded-index multimode fiber with a Ti:Sapphire laser capable to generate 200 fs pulses at 800 nm. With 90 THz frequency shift, Stokes and anti-Stokes sidebands are observed. The signature of spatiotemporal instability which allows the sidebands to inherit the spatial distribution of the pump pulse is observed with the spatial characterization of the generated sidebands. Later a high power laser system with adjustable output parameters is developed as a pump source for spatiotemporal nonlinear pulse propagation studies. By employing this source, with MHz pump pulse repetition rate high power octavespanning supercontinuum generation triggered by cascaded Raman scattering is demonstrated. The results obtained with this novel method is the highest average power and repetition supercontinuum source with a standard graded-index multimode fiber in the literature. Additional spatiotemporal wavelength conversion mechanisms, a small gradedindex multimode fiber between single mode fiber segments can be used as a bandpass filter and saturable absorber. These effects are combined in an all- fiber all normal dispersion laser cavity for the first time in the literature. In the demonstrated cavity design, mode-locking is achieved by nonlinear multimodal interference in graded-index multimode fiber segment. All-normal cavity design supports dissipative soliton pulse formation but it requires bandpass filtering. This requirement is satisfied with multimode interference reimaging thus a unique and simple all-fiber cavity design is constructed to generate ultrashort dissipative soliton pulses. The developed oscillator generates 5 ps pulses at 1030 nm with 44 MHz repetition rate. These pulses are externally compressed to 276 fs. All-fiber cavity design ensures stability and 70 dB sideband suppression is measured in radio frequency domain.
      Keywords
      Fiber Lasers
      Graded-index Multimode bers
      Ytterbium Doped Bers
      Nonlinear Ber Optics
      Spatiotemporal Nonlinear Dynamics
      Permalink
      http://hdl.handle.net/11693/46954
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 144
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy