Localization and Tracking of Implantable Biomedical Sensors
Date
2017Source Title
Sensors (Switzerland)
Print ISSN
1424-8220
Publisher
MDPI AG
Volume
17
Issue
3
Pages
1 - 20
Language
English
Type
ReviewItem Usage Stats
229
views
views
188
downloads
downloads
Abstract
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.
Keywords
Biomedical microrobotBiomedical robotics
Capsule endoscopy
Gastrointestinal (GI) tract
Localization
Tracking
Wireless capsule endoscopy