Show simple item record

dc.contributor.authorBiyikli, N.en_US
dc.contributor.authorHaider A.en_US
dc.date.accessioned2018-04-12T13:51:05Z
dc.date.available2018-04-12T13:51:05Z
dc.date.issued2017en_US
dc.identifier.issn0268-1242
dc.identifier.urihttp://hdl.handle.net/11693/38223
dc.description.abstractIn this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.en_US
dc.language.isoEnglishen_US
dc.source.titleSemiconductor Science and Technologyen_US
dc.relation.isversionofhttps://doi.org/10.1088/1361-6641/aa7adeen_US
dc.subjectAtomic layer depositionen_US
dc.subjectIIInitrideen_US
dc.subjectMetal-oxideen_US
dc.subjectNanoscaleen_US
dc.subjectNanostructureden_US
dc.subjectSelf-limitingen_US
dc.subjectSemiconductoren_US
dc.subjectAtomsen_US
dc.subjectCatalysisen_US
dc.subjectChemical sensorsen_US
dc.subjectCoatingsen_US
dc.subjectDepositionen_US
dc.subjectDepositsen_US
dc.subjectDielectric materialsen_US
dc.subjectEnergy conversionen_US
dc.subjectFlexible electronicsen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMetalsen_US
dc.subjectNanostructured materialsen_US
dc.subjectNanostructuresen_US
dc.subjectNanotechnologyen_US
dc.subjectProtective coatingsen_US
dc.subjectSelenium compoundsen_US
dc.subjectSemiconductor devicesen_US
dc.subjectSemiconductor growthen_US
dc.subjectSemiconductor materialsen_US
dc.subjectSurface reactionsen_US
dc.subjectTemperatureen_US
dc.subjectThin filmsen_US
dc.subjectTransition metalsen_US
dc.subjectWSI circuitsen_US
dc.subjectYarnen_US
dc.subjectIII-Nitrideen_US
dc.subjectMetal oxidesen_US
dc.subjectNano scaleen_US
dc.subjectNano-structureden_US
dc.subjectself-limitingen_US
dc.subjectAtomic layer depositionen_US
dc.titleAtomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductorsen_US
dc.typeReviewen_US
dc.departmentUNAM - Institute of Materials Science and Nanotechnology
dc.citation.volumeNumber32en_US
dc.citation.issueNumber9en_US
dc.identifier.doi10.1088/1361-6641/aa7adeen_US
dc.publisherInstitute of Physics Publishingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record