• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Molecular Biology and Genetics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Molecular Biology and Genetics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      TP53 mutations in familial breast cancer: Functional aspects

      Thumbnail
      View / Download
      111.9 Kb
      Author(s)
      Gasco, M.
      Yulug, I. G.
      Crook, T.
      Date
      2003
      Source Title
      Human Mutation
      Print ISSN
      1059-7794
      Publisher
      John Wiley & Sons, Inc.
      Volume
      21
      Issue
      3
      Pages
      301 - 306
      Language
      English
      Type
      Article
      Item Usage Stats
      223
      views
      252
      downloads
      Abstract
      Mutation in p53 (TP53) remains one of the most commonly described genetic events in human neoplasia. The occurrence of mutations is somewhat less common in sporadic breast carcinomas than in other cancers, with an overall frequency of about 20%. There is, however, evidence that p53 is mutated at a significantly higher frequency in breast carcinomas arising in carriers of germ-line BRCA1 and BRCA2 mutations. Some of the p53 mutants identified in BRCA1 and BRCA2 mutation carriers are either previously undescribed or infrequently reported in sporadic human cancers. Functional characterization of such mutants in various systems has revealed that they frequently possess properties not commonly associated with those occurring in sporadic cases: they retain apoptosis-inducing, transactivating, and growth-inhibitory activities similar to the wild-type protein, yet are compromised for transformation suppression and also possess an independent transforming phenotype. The occurrence of such mutants in familial breast cancer implies the operation of distinct selective pressures during tumorigenesis in BRCA-associated breast cancers.
      Keywords
      Apoptosis
      BRCA1
      BRCA2
      Breast cancer
      Cancer
      LFS
      Li- Fraumeni syndrome
      p53
      TP53
      Transactivation
      Tumor
      BRCA1 protein
      BRCA2 protein
      Protein p53
      Breast cancer
      Carcinogenesis
      Familial disease
      Gene function
      Gene mutation
      Genetic analysis
      Heterozygote
      Human
      Nucleotide sequence
      Phenotype
      Priority journal
      Review
      Apoptosis
      BRCA1 Protein
      BRCA2 Protein
      Breast neoplasms
      Family health
      Female
      Humans
      Mutation
      Tumor suppressor protein p53
      Permalink
      http://hdl.handle.net/11693/38100
      Published Version (Please cite this version)
      http://dx.doi.org/10.1002/humu.10173
      Collections
      • Department of Molecular Biology and Genetics 542
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT 

        Hill, R.; Madureira, P. A.; Ferreira, B.; Baptista, I.; Machado, S.; Colaço, L.; Dos Santos, M.; Liu, N.; Dopazo, A.; Ugurel, S.; Adrienn, A.; Kiss-Toth, E.; Isbilen, M.; Gure, A. O.; Link, W. (Nature Publishing Group, 2017)
        Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. ...
      • Thumbnail

        Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: A novel gene related to nuclear envelopathies 

        Kayman-Kurekci G.; Talim, B.; Korkusuz P.; Sayar, N.; Sarioglu, T.; Oncel I.; Sharafi P.; Gundesli H.; Balci-Hayta, B.; Purali, N.; Serdaroglu-Oflazer P.; Topaloglu H.; Dincer P. (Elsevier Ltd, 2014)
        We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, ...
      • Thumbnail

        Protein folding, misfolding and aggregation: the importance of two-electron stabilizing interactions 

        Cieplak, A. S. (Public Library of Science, 2017)
        Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy