• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      On code design for joint energy and information transfer

      Thumbnail
      View / Download
      1.6 Mb
      Author(s)
      Dabirnia M.
      Duman, T. M.
      Date
      2016
      Source Title
      IEEE Transactions on Communications
      Print ISSN
      0090-6778
      Publisher
      Institute of Electrical and Electronics Engineers Inc.
      Volume
      64
      Issue
      6
      Pages
      2677 - 2688
      Language
      English
      Type
      Article
      Item Usage Stats
      174
      views
      204
      downloads
      Abstract
      Harvesting energy from radio frequency signals along with transmitting data through them is appealing for different wireless communication scenarios, such as radio frequency identification (RFID) systems and implantable devices. In this paper, we propose a technique to design nonlinear codes for the use in such systems taking into account both energy transmission and error rate requirements. In particular, we propose using concatenation of a nonlinear trellis code (NLTC) with an outer low-density parity-check (LDPC) code. We design the NLTC based on maximization of its free distance. We give necessary and sufficient conditions for its catastrophicity; in order to avoid catastrophic codes, we connect each designed NLTC to a corresponding linear convolutional code allowing for the use of simpler conditions for verification. Furthermore, we use EXIT charts to design the outer LDPC code while fixing the inner NLTC. Via examples, we demonstrate that our designed codes operate at ∼ 0.8 dB away from the information theoretic limits, and they outperform both regular LDPC codes and optimized irregular LDPC codes for additive white Gaussian noise (AWGN) channels. In addition, we show that the proposed scheme outperforms the reference schemes of concatenating LDPC codes with nonlinear memoryless mappers and using classical linear block codes in a time switching mode. © 2016 IEEE.
      Keywords
      Joint energy and information transfer
      Low density parity check codes
      Nonlinear codes
      RF energy harvesting
      Permalink
      http://hdl.handle.net/11693/37694
      Published Version (Please cite this version)
      http://dx.doi.org/10.1109/TCOMM.2016.2557796
      Collections
      • Department of Electrical and Electronics Engineering 4011
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy