Jamming of Wireless Localization Systems

Date
2016
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Communications
Print ISSN
0090-6778
Electronic ISSN
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
64
Issue
6
Pages
2660 - 2676
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In this paper, the optimal jamming of wireless localization systems is investigated. Two optimal power allocation schemes are proposed for jammer nodes in the presence of total and peak power constraints. In the first scheme, power is allocated to jammer nodes in order to maximize the average Cramér-Rao lower bound (CRLB) of target nodes, whereas in the second scheme, the power allocation is performed for the aim of maximizing the minimum CRLB of target nodes. Both the schemes are formulated as linear programs, and a closed-form solution is obtained for the first scheme. For the second scheme, under certain conditions, the property of full total power utilization is specified, and a closed-form solution is obtained when the total power is lower than a specific threshold. In addition, it is shown that non-zero power is allocated to at most NT jammer nodes according to the second scheme in the absence of peak power constraints, where NT is the number of target nodes. In the presence of parameter uncertainty, robust versions of the power allocation schemes are proposed. Simulation results are presented to investigate the performance of the proposed schemes and to illustrate the theoretical results. © 2016 IEEE.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)