• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Mechanical Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Mechanical Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design and operation of MinIAQ: an untethered foldable miniature quadruped with individually actuated legs

      Thumbnail
      View / Download
      4.7 Mb
      Author(s)
      Karakadıoğlu, Cem
      Askari, Mohammad
      Özcan, Onur
      Date
      2017
      Source Title
      Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics, AIM 2017
      Publisher
      IEEE
      Pages
      247 - 252
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      248
      views
      424
      downloads
      Abstract
      This paper presents the design, development, and basic operation of MinIAQ, an origami-inspired, foldable, untethered, miniature quadruped robot. Instead of employing multilayer composite structures similar to most microrobotic fabrication techniques, MinIAQ is fabricated from a single sheet of thin A4-sized PET film. Its legs are designed based on a simple four-bar locomotion mechanism that is embedded within its planar design. Each leg is actuated and controlled individually by separate DC motors enabling gait modification and higher degree of freedom on controlling the motion. The origami-inspired fabrication technique is a fast and inexpensive method to make complex 3D robotic structures through successive-folding of laser-machined sheets. However, there is still a need for improvement in modulating and extending the design standards of origami robots. In an effort to addressing this need, the primitive foldable design patterns of MinIAQ for higher structural integrity and rigidity are presented in detail. The current robot takes less than two hours to be cut and assembled and weighs about 23 grams where 3.5 grams is the weight of its body, 7.5 grams is its motors and encoders, 5 grams is its battery, and about 7 grams is its current on-board electronics and sensors. The robot is capable of running about 30 minutes on a single fully charged 150mAh single cell LiPo battery. Using the feedback signals from the custom encoders, MinIAQ can perform a trot gait with a speed of approximately 0.65 Bodylengths/sec, or equivalently 7.5 cm/s.
      Keywords
      Foldable robots
      Legged robots
      Miniature robots
      Origami-inspired robots
      Unconventional manufacturing
      Permalink
      http://hdl.handle.net/11693/37639
      Published Version (Please cite this version)
      http://dx.doi.org/10.1109/AIM.2017.8014025
      Collections
      • Department of Mechanical Engineering 374
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy