Show simple item record

dc.contributor.authorRamzan M.en_US
dc.contributor.authorKhan T.M.en_US
dc.contributor.authorBolat S.en_US
dc.contributor.authorNebioglu M.A.en_US
dc.contributor.authorAltan H.en_US
dc.contributor.authorOkyay A.K.en_US
dc.contributor.authorTopalli K.en_US
dc.date.accessioned2018-04-12T11:14:22Z
dc.date.available2018-04-12T11:14:22Z
dc.date.issued2017en_US
dc.identifier.issn18666892
dc.identifier.urihttp://hdl.handle.net/11693/37471
dc.description.abstractThis paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations. © 2017, Springer Science+Business Media New York.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Infrared, Millimeter, and Terahertz Wavesen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10762-017-0397-7en_US
dc.subjectBandpass filtersen_US
dc.subjectFrequency selective surfacesen_US
dc.subjectHF etchingen_US
dc.subjectMetamaterialsen_US
dc.subjectMicrofabricationen_US
dc.subjectPeriodic structuresen_US
dc.subjectPyrex glassen_US
dc.subjectTerahertzen_US
dc.subjectBandpass filtersen_US
dc.subjectBandwidthen_US
dc.subjectEtchingen_US
dc.subjectFabricationen_US
dc.subjectFrequency selective surfacesen_US
dc.subjectGlassen_US
dc.subjectMetamaterialsen_US
dc.subjectMicroanalysisen_US
dc.subjectMicrofabricationen_US
dc.subjectMicromachiningen_US
dc.subjectPeriodic structuresen_US
dc.subjectTerahertz spectroscopyen_US
dc.subjectWave transmissionen_US
dc.subjectElectromagnetic simulationen_US
dc.subjectHF etchingen_US
dc.subjectMicro-fabrication techniquesen_US
dc.subjectMicromachining processen_US
dc.subjectPyrex glassen_US
dc.subjectTera Hertzen_US
dc.subjectTerahertz frequenciesen_US
dc.subjectTransmission bandwidthen_US
dc.subjectSubstratesen_US
dc.titleTerahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Processen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentUMRAM – National Magnetic Resonance Research Center
dc.citation.spage945en_US
dc.citation.epage957en_US
dc.citation.volumeNumber38en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1007/s10762-017-0397-7en_US
dc.publisherSpringer New York LLCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record