Show simple item record

dc.contributor.authorRufaihah, A. J.en_US
dc.contributor.authorYasa, I. C.en_US
dc.contributor.authorRamanujam, V. S.en_US
dc.contributor.authorArularasu, S. C.en_US
dc.contributor.authorKofidis, T.en_US
dc.contributor.authorGuler, M. O.en_US
dc.contributor.authorTekinay, A. B.en_US
dc.date.accessioned2018-04-12T11:13:35Z
dc.date.available2018-04-12T11:13:35Z
dc.date.issued2017en_US
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/11693/37443
dc.description.abstractMyocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.en_US
dc.language.isoEnglishen_US
dc.source.titleActa Biomaterialiaen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.actbio.2017.06.009en_US
dc.subjectCardiomyocyteen_US
dc.subjectMyocardial infarctionen_US
dc.subjectNeovascularizationen_US
dc.subjectPeptide nanofibersen_US
dc.subjectVEGFen_US
dc.subjectAlpha smooth muscle actinen_US
dc.subjectFibroblast growth factor 2en_US
dc.subjectGlycosaminoglycanen_US
dc.subjectMolecular scaffolden_US
dc.subjectNanofiberen_US
dc.subjectScatter factoren_US
dc.subjectSodium chlorideen_US
dc.subjectTroponin Ten_US
dc.subjectVasculotropin Aen_US
dc.subjectAngiogenic factoren_US
dc.subjectNanofiberen_US
dc.subjectPeptideen_US
dc.subjectVascular endothelial growth factor A, raten_US
dc.subjectVasculotropin Aen_US
dc.subjectAnimal cellen_US
dc.subjectAnimal experimenten_US
dc.subjectAnimal modelen_US
dc.subjectArticleen_US
dc.subjectCell adhesionen_US
dc.subjectCell differentiationen_US
dc.subjectCell fateen_US
dc.subjectControlled studyen_US
dc.subjectHeart functionen_US
dc.subjectHeart infarctionen_US
dc.subjectHeart left ventricle pressureen_US
dc.subjectHeart muscle contractilityen_US
dc.subjectHeart outputen_US
dc.subjectHeart performanceen_US
dc.subjectHeart tissueen_US
dc.subjectMaleen_US
dc.subjectNeovascularization (pathology)en_US
dc.subjectNonhumanen_US
dc.subjectPriority journalen_US
dc.subjectProtein expressionen_US
dc.subjectRaten_US
dc.subjectStem cellen_US
dc.subjectAnimalen_US
dc.subjectBiosynthesisen_US
dc.subjectCardiac muscleen_US
dc.subjectChemistryen_US
dc.subjectDisease modelen_US
dc.subjectHeart infarctionen_US
dc.subjectMetabolismen_US
dc.subjectPathologyen_US
dc.subjectWistar raten_US
dc.subjectAngiogenesis inducing agentsen_US
dc.subjectAnimalsen_US
dc.subjectDisease models, animalen_US
dc.subjectMaleen_US
dc.subjectMyocardial infarctionen_US
dc.subjectMyocardiumen_US
dc.subjectNanofibersen_US
dc.subjectPeptidesen_US
dc.subjectRatsen_US
dc.subjectRats, wistaren_US
dc.subjectVascular endothelial growth factor Aen_US
dc.titleAngiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarctionen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.citation.spage102en_US
dc.citation.epage112en_US
dc.citation.volumeNumber58en_US
dc.identifier.doi10.1016/j.actbio.2017.06.009en_US
dc.publisherActa Materialia Incen_US
dc.identifier.eissn1878-7568en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record