Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury
Author(s)
Date
2017Source Title
Biomaterials
Print ISSN
0142-9612
Publisher
Elsevier Ltd
Volume
134
Pages
117 - 127
Language
English
Type
ArticleItem Usage Stats
274
views
views
681
downloads
downloads
Abstract
Burn injuries are one of the most common types of trauma worldwide, and their unique physiology requires the development of specialized therapeutic materials for their treatment. Here, we report the use of synthetic, functional and biodegradable peptide nanofiber gels for the improved healing of burn wounds to alleviate the progressive loss of tissue function at the post-burn wound site. These bioactive nanofiber gels form scaffolds that recapitulate the structure and function of the native extracellular matrix through signaling peptide epitopes, which can trigger angiogenesis through their affinity to basic growth factors. In this study, the angiogenesis-promoting properties of the bioactive scaffolds were utilized for the treatment of a thermal burn model. Following the excision of necrotic tissue, bioactive gels and control solutions were applied topically onto the wound area. The wound healing process was evaluated at 7, 14 and 21 days following injury through histological observations, immunostaining and marker RNA/protein analysis. Bioactive peptide nanofiber-treated burn wounds formed well-organized and collagen-rich granulation tissue layers, produced a greater density of newly formed blood vessels, and exhibited increased re-epithelialization and skin appendage development with minimal crust formation, while non-bioactive peptide nanofibers and the commercial wound dressing 3M™ Tegaderm™ did not exhibit significant efficiency over sucrose controls. Overall, the heparin-mimetic peptide nanofiber gels increased the rate of repair of burn injuries and can be used as an effective means of facilitating wound healing.
Keywords
Burn injuryHeparin
Hydrogel
Peptide nanofiber
Self-assembly
Blood vessels
Gels
High temperature effects
Hydrogels
Nanofibers
Peptides
Polysaccharides
Self assembly
Tissue
Tissue regeneration
Bioactive nanofibers
Burn injury
Heparin
Histological observations
Native extracellular matrix
Re-epithelialization
Therapeutic materials
Wound healing process
Biomimetics
Collagen
Heparin
Nanofiber
RNA
Heparin
Nanofiber
Peptide
Angiogenesis
Animal experiment
Animal model
Animal tissue
Article
Burn
Controlled study
Debridement
Density
Epithelization
Full thickness skin graft
Gel
Immunohistochemistry
In vivo study
Male
Mouse
Nonhuman
Priority journal
RNA analysis
Skin appendage
Tissue regeneration
Wound dressing
Wound healing
Animal
Bagg albino mouse
Burn
Chemistry
Circular dichroism
Gel
Physiology
Scanning electron microscopy
Tissue scaffold
Animals
Burns
Circular dichroism
Gels
Heparin
Immunohistochemistry
Male
Mice
Mice, inbred BALB C
Microscopy, electron, scanning
Nanofibers
Peptides
Tissue scaffolds
Wound healing
Permalink
http://hdl.handle.net/11693/37432Published Version (Please cite this version)
http://dx.doi.org/10.1016/j.biomaterials.2017.04.040Collections
Related items
Showing items related by title, author, creator and subject.
-
Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds
Uzunalli, G.; Mammadov R.; Yesildal, F.; Alhan, D.; Ozturk, S.; Ozgurtas, T.; Güler, Mustafa O.; Tekinay, A. B. (American Chemical Society, 2017)Wound repair in adult mammals typically ends with the formation of a scar, which prevents full restoration of the function of the healthy tissue, although most of the wounded skin heals. Rapid and functional recovery of ... -
A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold
Tansik, G.; Kilic, E.; Beter, M.; Demiralp, B.; K.Sendur, G.; Can, N.; Ozkan, H.; Ergul, E.; Güler, Mustafa O.; Tekinay, A. B. (Royal Society of Chemistry, 2016)Biomineralization of the extracellular matrix (ECM) plays a crucial role in bone formation. Functional and structural biomimetic native bone ECM components can therefore be used to change the fate of stem cells and induce ... -
Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers
Senturk, B.; Cubuk, M. O.; Ozmen, M. C.; Aydin B.; Güler, Mustafa O.; Tekinay, A. B. (Elsevier, 2016-11)Atypical angiogenesis is one of the major symptoms of severe eye diseases, including corneal neovascularization, and the complex nature of abnormal vascularization requires targeted methods with high biocompatibility. The ...