Show simple item record

dc.contributor.authorHamsici, S.en_US
dc.contributor.authorEkiz, M. S.en_US
dc.contributor.authorCiftci, G. C.en_US
dc.contributor.authorTekinay, A. B.en_US
dc.contributor.authorGuler, M. O.en_US
dc.date.accessioned2018-04-12T11:09:39Z
dc.date.available2018-04-12T11:09:39Z
dc.date.issued2017en_US
dc.identifier.issn1043-1802
dc.identifier.urihttp://hdl.handle.net/11693/37309
dc.description.abstractPeptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.en_US
dc.language.isoEnglishen_US
dc.source.titleBioconjugate Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.bioconjchem.7b00155en_US
dc.subject9 fluorenylmethoxy carbonyl protected glycineen_US
dc.subjectAmino aciden_US
dc.subjectGemcitabineen_US
dc.subjectGlycine derivativeen_US
dc.subjectNanocarrieren_US
dc.subjectUnclassified drugen_US
dc.subjectAntineoplastic antimetaboliteen_US
dc.subjectDrug carrieren_US
dc.subjectNanomaterialen_US
dc.subjectAntineoplastic activityen_US
dc.subjectBreast cancer cell lineen_US
dc.subjectCell viabilityen_US
dc.subjectControlled studyen_US
dc.subjectCytotoxicityen_US
dc.subjectDrug conjugationen_US
dc.subjectDrug delivery systemen_US
dc.subjectDrug efficacyen_US
dc.subjectDrug structureen_US
dc.subjectSustained drug releaseen_US
dc.subjectAnalogs and derivativesen_US
dc.subjectBreast neoplasmsen_US
dc.subjectCell proliferationen_US
dc.subjectCell survivalen_US
dc.subjectChemistryen_US
dc.subjectDrug effectsen_US
dc.subjectPathologyen_US
dc.subjectTumor cell cultureen_US
dc.subjectAmyloiden_US
dc.subjectAntimetabolites, antineoplasticen_US
dc.subjectDeoxycytidineen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectNanofibersen_US
dc.subjectNanostructuresen_US
dc.subjectProdrugsen_US
dc.titleGemcitabine integrated nano-prodrug carrier systemen_US
dc.typeArticleen_US
dc.departmentUNAM - Institute of Materials Science and Nanotechnology
dc.citation.spage1491en_US
dc.citation.epage1498en_US
dc.citation.volumeNumber28en_US
dc.citation.issueNumber5en_US
dc.identifier.doi10.1021/acs.bioconjchem.7b00155en_US
dc.publisherAmerican Chemical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record