• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: enhanced water solubility, prolonged shelf life, and photostability of vitamin E

      Thumbnail
      View / Download
      6.5 Mb
      Author(s)
      Çelebioğlu, Aslı
      Uyar, Tamer
      Date
      2017
      Source Title
      Journal of Agricultural and Food Chemistry
      Print ISSN
      0021-8561
      Publisher
      American Chemical Society
      Volume
      65
      Issue
      26
      Pages
      5404 - 5412
      Language
      English
      Type
      Article
      Item Usage Stats
      287
      views
      871
      downloads
      Abstract
      Here, we demonstrated the electrospinning of polymer-free nanofibrous webs from inclusion complex (IC) between hydroxypropyl-β-cyclodextrin (HPβCD) and Vitamin E (Vitamin E/HPβCD-IC NF). The inclusion complexation between HPβCD and Vitamin E was prepared by using two different molar ratios (Vitamin E/HPβCD; 1:2 and 1:1), which correspond to theoretical value of ∼13% (w/w) and 26% (w/w) loading of Vitamin E in the nanofiber (NF) matrix. After electrospinning and storage, a very high loading of Vitamin E (up to ∼11% w/w, with respect to fiber matrix) was preserved in Vitamin E/HPβCD-IC NF. Because of the cyclodextrin inclusion complexation, only a minimal weight loss (only ∼2% w/w) was observed. While pure Vitamin E is insoluble in water, Vitamin E/HPβCD-IC NF web has displayed fast-dissolving behavior. Because of the greatly enhanced water-solubility of Vitamin E, Vitamin E/HPβCD-IC NF web has shown effective antioxidant activity. Additionally, Vitamin E/HPβCD-IC NF web has provided enhanced photostability for the sensitive Vitamin E by the inclusion complexation in which Vitamin E/HPβCD-IC NF still kept its antioxidant activity even after exposure to UV-light. Moreover, a 3 year-old Vitamin E/HPβCD-IC NF sample has shown very similar antioxidant efficiency when compared with freshly prepared Vitamin E/HPβCD-IC NF indicating that long-term stability was achieved for Vitamin E in the CD-IC fiber matrix. In brief, our results suggested that polymer-free electrospun Vitamin E/HPβCD-IC nanofibrous webs could have potential applications in food, pharmaceuticals, and healthcare thanks to its efficient antioxidant activity along with enhanced water-solubility, prolonged shelf life, and high photostability of Vitamin E.
      Keywords
      Antioxidant activity
      Cyclodextrins
      Electrospinning
      Inclusion complex
      Nanofibers
      Photostability
      Vitamin E (alpha-tocopherol)
      Water solubility
      Permalink
      http://hdl.handle.net/11693/37302
      Published Version (Please cite this version)
      https://doi.org/10.1021/acs.jafc.7b01562
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      • Nanotechnology Research Center (NANOTAM) 1179
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy