Mesoporous metallic rhodium nanoparticles
Author(s)
Date
2017Source Title
Nature Communications
Print ISSN
2041-1723
Publisher
Nature Publishing Group
Volume
8
Pages
1 - 8
Language
English
Type
ArticleItem Usage Stats
201
views
views
146
downloads
downloads
Abstract
Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ∼1/42.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O 2.
Keywords
MacrogolMethanol
Nanoparticle
Nitric oxide
Oxygen
Poly(methyl methacrylate)
Rhodium
Catalysis
Catalyst
Chemical analysis
Concentration (composition)
Crystal structure
Nanoparticle
Porous medium
Reduction
Rrhodium
Concentration (parameters)
Controlled study
Oxidation
Reduction (chemistry)
Surface area
Synthesis
Thermostability