Show simple item record

dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorDereshgi, S. A.en_US
dc.contributor.authorHajian, H.en_US
dc.contributor.authorBirant, G.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorBek, A.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:06:49Z
dc.date.available2018-04-12T11:06:49Z
dc.date.issued2017en_US
dc.identifier.issn2040-3364
dc.identifier.urihttp://hdl.handle.net/11693/37236
dc.description.abstractIn this paper, we propose a facile and large scale compatible design to obtain perfect ultrabroadband light absorption using metal-dielectric core-shell nanowires. The design consists of atomic layer deposited (ALD) Pt metal uniformly wrapped around hydrothermally grown titanium dioxide (TiO2) nanowires. It is found that the randomly oriented dense TiO2 nanowires can impose excellent light trapping properties where the existence of an ultrathin Pt layer (with a thickness of 10 nm) can absorb the light in an ultrabroadband frequency range with an amount near unity. Throughout this study, we first investigate the formation of resonant modes in the metallic nanowires. Our findings prove that a nanowire structure can support multiple longitudinal localized surface plasmons (LSPs) along its axis together with transverse resonance modes. Our investigations showed that the spectral position of these resonance peaks can be tuned with the length, radius, and orientation of the nanowire. Therefore, TiO2 random nanowires can contain all of these features simultaneously in which the superposition of responses for these different geometries leads to a flat perfect light absorption. The obtained results demonstrate that taking unique advantages of the ALD method, together with excellent light trapping of chemically synthesized nanowires, a perfect, bifacial, wide angle, and large scale compatible absorber can be made where an excellent performance is achieved while using less materials.en_US
dc.language.isoEnglishen_US
dc.source.titleNanoscaleen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c7nr04186aen_US
dc.subjectAtomic layer depositionen_US
dc.subjectDielectric materialsen_US
dc.subjectElectromagnetic wave absorptionen_US
dc.subjectHigh-k dielectricen_US
dc.subjectLight absorptionen_US
dc.subjectMetalsen_US
dc.subjectPlatinumen_US
dc.subjectScaffoldsen_US
dc.subjectTitanium compoundsen_US
dc.subjectTitanium dioxideen_US
dc.subjectAtomic layer depositeden_US
dc.subjectDielectric nanowiresen_US
dc.subjectDifferent geometryen_US
dc.subjectLocalized surface plasmonen_US
dc.subjectNanowire structuresen_US
dc.subjectTitanium dioxides (TiO2)en_US
dc.subjectTransverse resonance modeen_US
dc.subjectUltrathin metal layersen_US
dc.subjectNanowiresen_US
dc.title97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffolden_US
dc.typeArticleen_US
dc.departmentNanotechnology Research Center
dc.departmentInstitute of Materials Science and Nanotechnology
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentDepartment of Physics
dc.citation.spage16652en_US
dc.citation.epage16660en_US
dc.citation.volumeNumber9en_US
dc.citation.issueNumber43en_US
dc.identifier.doi10.1039/c7nr04186aen_US
dc.publisherRoyal Society of Chemistryen_US
dc.contributor.bilkentauthorÖzbay, Ekmelen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record