Relaxation-based viscosity mapping for magnetic particle imaging

Date
2017
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physics in Medicine and Biology
Print ISSN
0031-9155
Electronic ISSN
Publisher
Institute of Physics Publishing
Volume
62
Issue
9
Pages
3422 - 3439
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where 'color MPI' techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa • s-15.33 mPa • s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)