• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Gate induced monolayer behavior in twisted bilayer black phosphorus

      Thumbnail
      View / Download
      3.7 Mb
      Author(s)
      Sevik, C.
      Wallbank, J. R.
      Gülseren, O.
      Peeters, F. M.
      Çakir, D.
      Date
      2017
      Source Title
      2D Materials
      Print ISSN
      2053-1583
      Publisher
      IOP Publishing
      Volume
      4
      Issue
      3
      Language
      English
      Type
      Article
      Item Usage Stats
      190
      views
      288
      downloads
      Abstract
      Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V A-1 out-of-plane electric field results in a ~60% increase in the hole effective mass along the y (x) axis and enhances the m*y /m*x (m*x /m*y) ratio as much as by a factor of 40. Our DFT and k p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices. © 2017 IOP Publishing Ltd.
      Keywords
      Black phosphorus
      Effective mass
      Electric field
      First principles calculations
      K.p
      Permalink
      http://hdl.handle.net/11693/37163
      Published Version (Please cite this version)
      https://doi.org/10.1088/2053-1583/aa80c4
      Collections
      • Department of Physics 2550
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy