Quantum Dynamics of Long-Range Interacting Systems Using the Positive-P and Gauge-P Representations
Author
Wüster, S.
Corney, J. F.
Rost, J. M.
Deuar, P.
Date
2017Source Title
Physical Review E
Print ISSN
2470-0045
Publisher
American Physical Society
Volume
96
Issue
1
Pages
1 - 22
Language
English
Type
ArticleItem Usage Stats
117
views
views
81
downloads
downloads
Abstract
We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long-range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalization group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance, and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.
Keywords
Bose-Einstein condensationExchange interactions
Gages
Numerical methods
Phase space methods
Quantum optics
Statistical mechanics
Stochastic systems
Bose-Einstein condensates
Density matrix renormalization group
Interacting system
Long range interactions
Non-local interactions
Quantum dynamics
Quantum evolution
Very large systems
Quantum theory
Permalink
http://hdl.handle.net/11693/37129Published Version (Please cite this version)
http://dx.doi.org/10.1103/PhysRevE.96.013309Collections
Related items
Showing items related by title, author, creator and subject.
-
Non-Markovian dynamics in ultracold Rydberg aggregates
Genkin, M.; Schönleber, D. W.; Wüster, S.; Eisfeld, A. (Institute of Physics Publishing Ltd., 2016)We propose a setup of an open quantum system in which the environment can be tuned such that either Markovian or non-Markovian system dynamics can be achieved. The implementation uses ultracold Rydberg atoms, relying on ... -
Quantum information processing in solid states: A critique of two-level approximation
Savran K.; Hakioğlu T. (World Scientific Publishing Co., 2005)We examine the effect of multilevels on decoherence and dephasing properties of a quantum system consisting of a non-ideal two level subspace, identified as the qubit and a finite set of higher energy levels above this ... -
Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions
Delikanlı, S.; Akgül, M. Z.; Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Zhang, P.; Bozok, B.; Hernández-Martínez, P.L.; Christodoulides, J.; Cartwright, A. N.; Petrou, A.; Demir, Hilmi Volkan (American Chemical Society, 2015)In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn2+-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through ...