Quantum Zeno Suppression of Intramolecular Forces

Date

2017

Authors

Wüster, S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review Letters

Print ISSN

0031-9007

Electronic ISSN

Publisher

American Physical Society

Volume

119

Issue

1

Pages

1 - 6

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We show that Born-Oppenheimer surfaces can intrinsically decohere, implying loss of coherence among constituent electronic basis states. We consider the example of interatomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultracold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete cessation of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)