Show simple item record

dc.contributor.authorAltuntas, S.en_US
dc.contributor.authorBuyukserin, F.en_US
dc.contributor.authorHaider, A.en_US
dc.contributor.authorAltinok, B.en_US
dc.contributor.authorBiyikli, N.en_US
dc.contributor.authorAslim, B.en_US
dc.date.accessioned2018-04-12T10:53:54Z
dc.date.available2018-04-12T10:53:54Z
dc.date.issued2016en_US
dc.identifier.issn0928-4931
dc.identifier.urihttp://hdl.handle.net/11693/36803
dc.description.abstractNanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart.en_US
dc.language.isoEnglishen_US
dc.source.titleMaterials Science and Engineering C: Materials for Biological Applicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.msec.2016.05.084en_US
dc.subjectAlumina membranesen_US
dc.subjectBiomaterialsen_US
dc.subjectElectrical stimulationen_US
dc.subjectNanotechnologyen_US
dc.subjectPC12 cellsen_US
dc.subjectAluminaen_US
dc.subjectBiomaterialsen_US
dc.subjectCell adhesionen_US
dc.subjectCellsen_US
dc.subjectCoatingsen_US
dc.subjectControlled drug deliveryen_US
dc.subjectCytologyen_US
dc.subjectInterfaces (materials)en_US
dc.subjectMedical applicationsen_US
dc.subjectMembranesen_US
dc.subjectNanoporesen_US
dc.subjectNanotechnologyen_US
dc.subjectNeuronsen_US
dc.subjectPorous materialsen_US
dc.subjectSurface topographyen_US
dc.subjectAlumina membranesen_US
dc.subjectAnodized alumina membranesen_US
dc.subjectBiomedical applicationsen_US
dc.subjectElectrical stimulationsen_US
dc.subjectNanoporous morphologiesen_US
dc.subjectNeural differentiationsen_US
dc.subjectPC-12 cellsen_US
dc.subjectPC-12 pheochromocytoma cellsen_US
dc.subjectConductive materialsen_US
dc.subjectAluminum oxideen_US
dc.subjectArtificial membraneen_US
dc.subjectDelayed release formulationen_US
dc.subjectNerve growth factoren_US
dc.subjectAnimalen_US
dc.subjectArtificial membraneen_US
dc.subjectCell adhesionen_US
dc.subjectChemistryen_US
dc.subjectDelayed release formulationen_US
dc.subjectDrug effectsen_US
dc.subjectElectric conductivityen_US
dc.subjectPC12 cell lineen_US
dc.subjectPharmacokineticsen_US
dc.subjectPharmacologyen_US
dc.subjectRaten_US
dc.subjectAluminum oxideen_US
dc.subjectAnimalsen_US
dc.subjectCell adhesionen_US
dc.subjectDelayed-action preparationsen_US
dc.subjectElectric conductivityen_US
dc.subjectMembranes, artificialen_US
dc.subjectNerve growth factoren_US
dc.subjectPC12 cellsen_US
dc.subjectRatsen_US
dc.titleProtein-releasing conductive anodized alumina membranes for nerve-interface materialsen_US
dc.typeArticleen_US
dc.departmentUNAM - Institute of Materials Science and Nanotechnology
dc.citation.spage590en_US
dc.citation.epage598en_US
dc.citation.volumeNumber67en_US
dc.identifier.doi10.1016/j.msec.2016.05.084en_US
dc.publisherElsevier Ltden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record