Show simple item record

dc.contributor.authorArslan, E.en_US
dc.contributor.authorGuler, M. O.en_US
dc.contributor.authorTekinay, A. B.en_US
dc.date.accessioned2018-04-12T10:51:58Z
dc.date.available2018-04-12T10:51:58Z
dc.date.issued2016-02en_US
dc.identifier.issn1525-7797
dc.identifier.urihttp://hdl.handle.net/11693/36748
dc.description.abstractRecent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.en_US
dc.language.isoEnglishen_US
dc.source.titleBiomacromoleculesen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.biomac.5b01637en_US
dc.subjectBiomechanicsen_US
dc.subjectCell cultureen_US
dc.subjectCellsen_US
dc.subjectComplex networksen_US
dc.subjectCytologyen_US
dc.subjectNanofibersen_US
dc.subjectPeptidesen_US
dc.subjectScaffolds (biology)en_US
dc.subjectStem cellsen_US
dc.subjectTissueen_US
dc.subjectChondrogenic differentiationen_US
dc.subjectExtracellular matricesen_US
dc.subjectMesenchymal stem cellen_US
dc.subjectOsteogenic differentiationen_US
dc.subjectSupramolecular assembliesen_US
dc.subjectSynergistic effecten_US
dc.subjectSynthetic extracellular matrixen_US
dc.subjectThreedimensional (3-d)en_US
dc.subjectBiomimeticsen_US
dc.subjectCollagen type 1en_US
dc.subjectCollagen type 2en_US
dc.subjectGlycosaminoglycan polysulfateen_US
dc.subjectMessenger RNAen_US
dc.subjectNanofiberen_US
dc.subjectTranscription factor RUNX2en_US
dc.subjectTranscription factor Sox9en_US
dc.subjectBiomaterialen_US
dc.subjectCulture mediumen_US
dc.subjectGlycosaminoglycanen_US
dc.subjectNanomaterialen_US
dc.subjectAnimal cellen_US
dc.subjectArticleen_US
dc.subjectBeta sheeten_US
dc.subjectBiomimeticsen_US
dc.subjectBone developmenten_US
dc.subjectCell adhesionen_US
dc.subjectCell differentiationen_US
dc.subjectCell lineageen_US
dc.subjectCell migrationen_US
dc.subjectCell viabilityen_US
dc.subjectChondrogenesisen_US
dc.subjectConcentration (parameters)en_US
dc.subjectConformational transitionen_US
dc.subjectControlled studyen_US
dc.subjectExtracellular matrixen_US
dc.subjectHydrogen bonden_US
dc.subjectIn vitro studyen_US
dc.subjectIntracellular signalingen_US
dc.subjectMesenchymal stem cellen_US
dc.subjectMicroenvironmenten_US
dc.subjectMolecular imagingen_US
dc.subjectNonhumanen_US
dc.subjectOscillationen_US
dc.subjectParticle sizeen_US
dc.subjectPriority journalen_US
dc.subjectProtein expressionen_US
dc.subjectRaten_US
dc.subjectStatic electricityen_US
dc.subjectSurface chargeen_US
dc.subjectThree dimensional imagingen_US
dc.subjectZeta potentialen_US
dc.subjectAnimalen_US
dc.subjectBone developmenten_US
dc.subjectCell lineen_US
dc.subjectCell lineageen_US
dc.subjectChemistryen_US
dc.subjectChondrogenesisen_US
dc.subjectCulture mediumen_US
dc.subjectCytologyen_US
dc.subjectDrug effectsen_US
dc.subjectExtracellular matrixen_US
dc.subjectMesenchymal stroma cellen_US
dc.subjectMetabolismen_US
dc.subjectPharmacologyen_US
dc.subjectProceduresen_US
dc.subjectTissue engineeringen_US
dc.subjectTissue scaffolden_US
dc.subjectAnimalsen_US
dc.subjectBiocompatible Materialsen_US
dc.subjectCell Lineen_US
dc.titleGlycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environmenten_US
dc.typeArticleen_US
dc.departmentUNAM - Institute of Materials Science and Nanotechnology
dc.departmentNANOTAM - Nanotechnology Research Center
dc.citation.spage1280en_US
dc.citation.epage1291en_US
dc.citation.volumeNumber17en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1021/acs.biomac.5b01637en_US
dc.publisherAmerican Chemical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record