Supramolecular GAG-like self-assembled glycopeptide nanofibers Induce chondrogenesis and cartilage regeneration
Author(s)
Date
2016Source Title
Biomacromolecules
Print ISSN
1525-7797
Publisher
American Chemical Society
Volume
17
Issue
2
Pages
679 - 689
Language
English
Type
ArticleItem Usage Stats
228
views
views
385
downloads
downloads
Abstract
Glycosaminoglycans (GAGs) and glycoproteins are vital components of the extracellular matrix, directing cell proliferation, differentiation, and migration and tissue homeostasis. Here, we demonstrate supramolecular GAG-like glycopeptide nanofibers mimicking bioactive functions of natural hyaluronic acid molecules. Self-assembly of the glycopeptide amphiphile molecules enable organization of glucose residues in close proximity on a nanoscale structure forming a supramolecular GAG-like system. Our in vitro culture results indicated that the glycopeptide nanofibers are recognized through CD44 receptors, and promote chondrogenic differentiation of mesenchymal stem cells. We analyzed the bioactivity of GAG-like glycopeptide nanofibers in chondrogenic differentiation and injury models because hyaluronic acid is a major component of articular cartilage. Capacity of glycopeptide nanofibers on in vivo cartilage regeneration was demonstrated in microfracture treated osteochondral defect healing. The glycopeptide nanofibers act as a cell-instructive synthetic counterpart of hyaluronic acid, and they can be used in stem cell-based cartilage regeneration therapies.
Keywords
Cell cultureCell proliferation
Cells
Cytology
Hyaluronic acid
Molecules
Nanofibers
Organic acids
Peptides
Self assembly
Stem cells
Supramolecular chemistry
Tissue
Tissue homeostasis
Amphiphile molecules
Articular cartilages
Cartilage regeneration
Chondrogenic differentiation
Extracellular matrices
Mesenchymal stem cell
Nanoscale structure
Osteochondral defects
Cartilage
Hermes antigen
Cd44 protein, mouse
Hermes antigen
Cartilage
Mesenchymal Stromal Cells
Molecular Mimicry
Regeneration
Scattering, Small Angle
Tissue Scaffolds
X-Ray Diffraction
Permalink
http://hdl.handle.net/11693/36747Published Version (Please cite this version)
http://dx.doi.org/10.1021/acs.biomac.5b01669Collections
Related items
Showing items related by title, author, creator and subject.
-
Materials for articular cartilage regeneration
Tombuloglu, Ayşegül; Tekinay, Ayşe B.; Güler, Mustafa O. (Bentham Science Publishers B.V., 2012)Many health problems remaining to be untreatable throughout the human history can be overcome by utilizing new biomedical materials. Healing cartilage defects is one of the problems causing significant health issue due to ... -
Effect of double growth factor release on cartilage tissue engineering
Ertan, A.B.; Yilgor P.; Bayyurt, B.; Çalikoǧlu, A.C.; Kaspar Ç.; Kök F.N.; Kose G.T.; Hasirci V. (2013)The effects of double release of insulin-like growth factor I (IGF-I) and growth factor β1 (TGF-β1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were ... -
Peptide-based materials for cartilage tissue regeneration
Hastar, Nurcan; Arslan, Elif.; Güler, Mustafa O.; Tekinay, Ayse B. (Springer New York LLC, 2017)Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive ...