• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Modeling of semiconductor devices based on quantum wells: quantum cascade laser as an example

      Thumbnail
      View / Download
      1.6 Mb
      Author
      Abbasian, Hamed
      Advisor
      Gülseren, Oğuz
      Date
      2018-02
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      75
      views
      181
      downloads
      Metadata
      Show full item record
      Abstract
      It has been two decades since the quantum-cascade lasers (QCLs) have emerged in 1994 for the first time. As time goes on, QCLs reach to higher points scientifically and economically and the usage of QCLs devices continually grows in optoelectronic device market because of their potential applications in various areas in mid- and far-infrared regions. Moreover, their performance is still improving. QCLs lase based on electron transition between intersubbands and tunneling through potential barriers where electron transition causes photon emission. This takes place in conduction band; that is why QCLs are considered as unipolar semiconductor lasers. The frequencies of emitted photons depend on the location of the allowed energy levels which can be controlled by carefully choosing consecutive wells and barriers with suitable widths. In the present thesis, the transfer matrix method is employed to obtain transmission coe cient and wave functions of electron inside an arbitrary potential profile which is crucial for characterizing semiconductor devices based on quantum well. The obtained wave functions are used to get quantities necessary for characterizing QCL resulted from the potential profile.
      Keywords
      Quantum Cascade Laser
      Transfer Matrix Method
      Nanostructured Device
      Quantum Well
      Permalink
      http://hdl.handle.net/11693/35995
      Collections
      • Dept. of Physics - Master's degree 154

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin