• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model description of friction on planar and buckled two dimensional materials

      Thumbnail
      Embargo Lift Date: 2019-01-19
      View / Download
      2.1 Mb
      Author
      Uzlu, Hasan Burkay
      Advisor
      Gülseren, Oğuz
      Date
      2018-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      167
      views
      126
      downloads
      Abstract
      The law of friction has been known since the 18th century but yet, the development on the tribology field was established in the last decades mainly by the invention of frictional force microscope (FFM), which enabled scientist to study friction on atomic levels. To describe the friction phenomena at nanoscale, molecular dynamics (MD) and density functional theory (DFT) models are commonly used, popular models and detailed information about friction can be obtained via those models. On the other hand, reduced-order simplified models such as Prandtl-Tomlinson (PT) model can also provide essential information about friction phenomena and understanding a phenomenon via a simplified model is always motivate. In this thesis, Prandtl-Tomlinson model is generalized into three dimensions and the model is illustrated in both two and three dimensions on various quasi two dimensional crystal structures such as graphene, silicene, germanene and hexagonal boron nitride. By solving the equation of motion of the PT model numerically, friction curves and some parametric dependences of the friction such as anisotropy and friction dependence on external loading force is analyzed. We concluded that the PT model in three dimensions provides good results and can be used to analyze friction phenomena to save from computational cost in MD and DFT models.
      Keywords
      Graphene
      Friction
      Prandtl-Tomlinson model
      Stick-slip motion
      Tribology
      Permalink
      http://hdl.handle.net/11693/35743
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy