• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Industrial Engineering
      • Dept. of Industrial Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Terrain visibility and guarding problems

      Thumbnail
      View / Download
      2.7 Mb
      Author(s)
      Eliş, Haluk
      Advisor
      Oğuz, Osman
      Date
      2017-10
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      248
      views
      310
      downloads
      Abstract
      Watchtowers are located on terrains to detect fires, military units are deployed to watch the terrain to prevent infiltration, and relay stations are placed such that no dead zone is present on the terrain to maintain uninterrupted communication. In this thesis, any entity that is capable of observing or sensing a piece of land or an object on the land is referred to as a guard. Thus, watchtowers, military units and relay stations are guards and so are sensors, observers (human beings), cameras and the like. Observing, seeing, covering and guarding will mean the same. The viewshed of a given guard on a terrain is defined to be those portions of the terrain visible to the guard and the calculation of the viewshed of the guard is referred to as the viewshed problem. Locating minimum number of guards on a terrain (T) such that every point on the terrain is guarded by at least one of the guards is known as terrain guarding problem (TGP). Terrains are generally represented as regular square grids (RSG) or triangulated irregular networks (TIN). In this thesis, we study the terrain guarding problem and the viewshed problem on both representations. The first problem we deal with is the 1.5 dimensional terrain guarding problem (1.5D TGP). 1.5D terrain is a cross-section of a TIN and is characterized by a piecewise linear curve. The problem has been shown to be NP-Hard. To solve the problem to optimality, a finite dominating set (FDS) of size O(n2) and a witness set of size O(n2) have been presented earlier, where n is the number of vertices on T. An FDS is a finite set of points that contains an optimal solution to an optimization problem possibly with an uncountable feasible set. A witness set is a discretization of the terrain, and thus a finite set, such that guarding of the elements of the witness set implies guarding of T. We show that there exists an FDS, composed of convex points and dip points, with cardinality O(n). We also prove that there exist witness sets of cardinality O(n), which are smaller than O(n2) found earlier. The existence of smaller FDSs and witness sets leads to the reduction of decision variables and constraints respectively in the zero-one integer programming (ZOIP) formulation of the problem. Next, we discuss the viewshed problem and TGP on TINs, also known as 2.5D terrain guarding problem. No FDS has been proposed for this problem yet. To solve the problem to optimality the viewshed problem must also be solved. Hidden surface removal algorithms that claim to solve the viewshed problem do not provide analytical solutions and present some ambiguities regarding implementation. Other studies that make use of the horizon information of the terrain to calculate viewshed do so by projecting the vertices of the horizon onto the supporting plane of the triangle of interest and then by connecting the projections of the vertices to find the visible region on the triangle. We show that this approach is erroneous and present an alternative projection model in 3D space. The invisible region on a given triangle caused by another traingle is shown to be characterized by a system of nonlinear equations, which are linearized to obtain a polyhedral set. Finally, a realistic example of the terrain guarding problem is studied, which involves the surveillance of a rugged geographical terrain approximated by RSG by means of thermal cameras. A number of issues related to the terrain-guarding problem on RSGs are addressed with integer-programming models proposed to solve the problem. Next, a sensitivity analysis is carried out in which two fictitious terrains are created to see the effect of the resolution of a terrain, and of terrain characteristics, on coverage optimization. Also, a new problem, called the blocking path problem, is introduced and solved by an integer-programming formulation based on a network paradigm.
      Keywords
      Terrain guarding problem
      Viewshed problem
      Terrain approximation
      Location problems
      Finite dominating sets
      Witness sets
      Blocking path problem
      Zero-one integer programming
      Permalink
      http://hdl.handle.net/11693/35644
      Collections
      • Dept. of Industrial Engineering - Ph.D. / Sc.D. 50
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        Structured least squares with bounded data uncertainties 

        Pilanci, Mert; Arıkan, Orhan; Oguz, B.; Pınar, Mustafa C. (IEEE, 2009)
        In many signal processing applications the core problem reduces to a linear system of equations. Coefficient matrix uncertainties create a significant challenge in obtaining reliable solutions. In this paper, we present a ...
      • Thumbnail

        A distance-limited continuous location-allocation problem for spatial planning of decentralized systems 

        Gokbayrak, K.; Kocaman, A. S. (Elsevier, 2017)
        We introduce a new continuous location-allocation problem where the facilities have both a fixed opening cost and a coverage distance limitation. The problem has wide applications especially in the spatial planning of water ...
      • Thumbnail

        Duality, area-considerations, and the Kalai–Smorodinsky solution 

        Karagözoğlu, E.; Rachmilevitch, S. (Elsevier, 2017)
        We introduce a new solution concept for 2-person bargaining problems, which can be considered as the dual of the Equal-Area solution (EA) (see Anbarcı and Bigelow (1994)). Hence, we call it the Dual Equal-Area solution ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy