• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Enhancing feature selection with contextual relatedness filtering using Wikipedia

      Thumbnail
      Embargo Lift Date: 2019-08-10
      View / Download
      1.5 Mb
      Author(s)
      Baydar, Melih
      Advisor
      Can, Fazlı
      Date
      2017-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      155
      views
      122
      downloads
      Abstract
      Feature selection is an important component of information retrieval and natural language processing applications. It is used to extract distinguishing terms for a group of documents; such terms, for example, can be used for clustering, multi-document summarization and classi cation. The selected features are not always the best representatives of the documents due to some noisy terms. Addressing this issue, our contribution is twofold. First, we present a novel approach of ltering out the noisy, unrelated terms from the feature lists with the usage of contextual relatedness information of terms to their topics in order to enhance the feature set quality. Second, we propose a new method to assess the contextual relatedness of terms to the topic of their documents. Our approach automatically decides the contextual relatedness of a term to the topic of a set of documents using co-occurrences with the distinguishing terms of the document set inside an external knowledge source, Wikipedia for our work. Deletion of unrelated terms from the feature lists gives a better, more related set of features. We evaluate our approach for cluster labeling problem where feature sets for clusters can be used as label candidates. We work on commonly used 20NG and ODP datasets for the cluster labeling problem, nding that it successfully detects relevancy information of terms to topics, and ltering out irrelevant label candidates results in signi cantly improved cluster labeling quality.
      Keywords
      Feature Selection
      Contextual Relatedness
      Cluster Labeling
      Permalink
      http://hdl.handle.net/11693/33564
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy