• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design and development of ecm-inspired peptidebased nanostructures for bioengineering and biomedicine

      Thumbnail
      Embargo Lift Date: 2020-08-30
      View / Download
      98.0 Mb
      Author(s)
      Arslan, Elif
      Advisor
      Tekinay, Ayşe Begüm
      Date
      2017-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      207
      views
      26
      downloads
      Abstract
      Advances in understanding of cell-matrix interactions and the regulation of cellular behaviors through nanobiotechnological tools have presented new perspectives for regenerative medicine. Peptide amphiphiles have been used as building blocks for development of bioactive synthetic nanofiber scaffolds for regenerative medicine applications. Biocompatibility, tailorable characteristics, and mechanical stability as well as bioactivitiy of these peptide nanostructures make them ideal candidates for biomedical applications. To guide natural cellular activities, biomaterials should provide a microenvironment similar to that experienced by cells under natural conditions. The native extracellular matrix (ECM) not only provides a suitable physical environment but also incorporates the necessary set of biochemical and mechanical signals to ensure the normal function of cells, as well as mediating their differentiation, morphogenesis and homeostasis by providing biological, physical, and chemical recognition signals that can trigger specific interactions with cell surface receptors. In this thesis, different ECM-mimetic peptide nanofiber formulations were designed and developed, which were shown to have superior chondrogenic and therapeutic effect on stem cell differentiation in vitro and cartilage regeneration in vivo. Hence, the synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as therapeutic agents and model systems.
      Keywords
      Extracellular matrix
      Peptide nanofiber
      Mesenchymal stem cell
      Cartilage regneration
      Bioactive scaffold
      Permalink
      http://hdl.handle.net/11693/33548
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D. 80
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy