• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Chemistry
      • Dept. of Chemistry - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Impedance based modeling of battery parameters and behavior

      Thumbnail
      View / Download
      8.0 Mb
      Author
      Aydın, Elif
      Advisor
      Ülgüt, Burak
      Date
      2017-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      1,883
      views
      353
      downloads
      Abstract
      Modeling battery performance under arbitrary load has gained importance in recent years with the increasing demand on batteries in various fields from automotive industry to consumer electronic devices. Due to numerous application areas of electrochemical energy storage (EES) systems, researchers have tried to predict the battery performance and the voltage using extensive calculations. Unfortunately, in order to achieve high levels of accuracy, the model has to be algebraically and computationally complex. Models with decreased computational and algebraic complexity suffer from loss of accuracy. In this thesis, we offer a new modeling approach to predict the voltage responses of batteries and supercapacitors which is both algebraically straightforward and yielding more accurate results. Our approach is valid using any discharge profile including published by regulatory bodies such as Environmental Protection Agency (EPA). Our method is based on Electrochemical Impedance Spectroscopy (EIS) measurements done on the system to be predicted and slow DC discharge. EIS data is used directly to predict the fast moving portion of the voltage response to the profiles. The EIS data is used as is, namely, in frequency domain without any modeling. The slow DC discharge data provides DC response and is added in through a straightforward lookup table. This widely applicable approach can predict the voltage with less than 1% error, without any adjustable parameters to a large variety of discharge profiles.
      Keywords
      Electrochemical Impedance Spectroscopy
      Battery Modeling, Battery
      Supercapacitor
      Permalink
      http://hdl.handle.net/11693/33537
      Collections
      • Dept. of Chemistry - Master's degree 129
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy