• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Privacy-preserving data sharing and utilization between entities

      Thumbnail
      Embargo Lift Date: 2018-08-03
      View / Download
      1.8 Mb
      Author(s)
      Demirağ, Didem
      Advisor
      Ayday, Erman
      Date
      2017-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      172
      views
      233
      downloads
      Abstract
      In this thesis, we aim to enable privacy-preserving data sharing between entities and propose two systems for this purpose: (i) a veri able computation scheme that enables privacy-preserving similarity computation in the malicious setting and (ii) a privacy-preserving link prediction scheme in the semi-honest setting. Both of these schemes preserve the privacy of the involving parties, while performing some tasks to improve the service quality. In veri able computation, we propose a centralized system, which involves a client and multiple servers. We speci cally focus on the case, in which we want to compute the similarity of a patient's data across several hospitals. Client, who is the hospital that owns the patient data, sends the query to multiple servers, which are di erent hospitals. Client wants to nd similar patients in these hospitals in order to learn about the treatment techniques applied to those patients. In our link prediction scheme, we have two social networks with common users in both of them. We choose two nodes to perform link prediction between them. We perform link prediction in a privacy-preserving way so that neither of the networks learn the structure of the other network. We apply di erent metrics to de ne the similarity of the nodes. While doing this, we utilize privacy-preserving integer comparison.
      Keywords
      Veri able computation
      Link prediction
      Data privacy
      Cryptography
      Homomorphic encryption
      Security
      Permalink
      http://hdl.handle.net/11693/33532
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy