• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Random access over wireless links: optimal rate and activity probability selection

      Thumbnail
      View / Download
      730.2 Kb
      Author
      Karakoç, Nurullah
      Advisor
      Duman, Tolga Mete
      Date
      2017-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      129
      views
      149
      downloads
      Abstract
      Due to the rapidly increasing number of devices in wireless networks with the proliferation of applications based on new technologies such as machine to machine communications and Internet of Things, there is a growing interest in the random access schemes as they provide a simple means of channel access. To this end, various schemes have been proposed based on the ALOHA protocol to increase the e ciency of the medium access control layer over the last decade. On the other hand, physical layer aspects of random access networks have received relatively limited attention, and there is a need to consider optimal use of the underlying physical layer properties especially for transmission over wireless channels. In this thesis, we study uncoordinated random access schemes over wireless fading channels where each user independently decides whether to send a packet or not to a common receiver at any given time slot. To characterize the system throughput, i.e., the expected sum-rate, an information theoretic formulation is developed. We consider two scenarios: classical slotted ALOHA, where no multiuser detection (MUD) capability is available and slotted ALOHA with MUD. Our main contribution is that the optimal rates and the channel activity probabilities can be characterized as a function of the user distances to the receiver to maximize the system throughput in each case (more precisely, as a function of the average signal to noise ratios of the users). We use Rayleigh fading as our main channel model, however, we also study the cases where log-normal shadowing is observed along with small scale fading. Our proposed optimal rate selection schemes o er signi cant increase in expected system throughput compared to the same rate approach commonly used in the literature. In addition to the overall throughput optimization, the issue of fairness among users is also investigated and solutions which guarantee a minimum amount of individual throughput are developed. We also design systems with limited individual outage probabilities of the users for increased energy e ciency and reduced delay. All of these analytical works are supported with detailed numerical examples, and the performance of the proposed methods are evaluated.
      Keywords
      Random access
      Rayleigh fading
      Shadowing
      Machine to machine communications
      Multiple access channel
      Channel capacity
      ALOHA networks
      Multi user detection
      Throughput
      Fairness
      Permalink
      http://hdl.handle.net/11693/33514
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 594
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy