• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Low-bandwidth image reconstruction for magnetic particle imaging

      Thumbnail
      Embargo Lift Date: 2018-06-09
      View / Download
      11.4 Mb
      Author(s)
      Sarıca, Damla
      Advisor
      Sarıtaş, Emine Ülkü
      Date
      2017-06
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      181
      views
      120
      downloads
      Abstract
      Magnetic Particle Imaging (MPI) is a high contrast tracer imaging modality with applications such as stem cell tracking, angiography and cancer imaging. In MPI, a time-varying magnetic field called the drive field is applied, and the magnetization response of superparamagnetic iron oxide nanoparticles (SPIOs) is recorded. The signal from these nanoparticles is at both drive field frequency and its higher harmonics. However, due to simultaneous excitation and signal reception, the direct feedthrough contaminates the nanoparticle signal at the fundamental harmonic. The direct feedthrough signal can be eliminated using a high-pass filter, where the effect of this filtering has been shown to be a DC loss in image domain. Reliable x-space image reconstruction can then be achieved via enforcing positivity and continuity of the image. However, low SPIO concentrations and/or hardware constraints can further limit the usable signal bandwidth to only a few harmonics. Under low bandwidth signal acquisitions, the loss of higher harmonics results in blurred images after regular x-space reconstruction. This thesis proposes an iterative x-space reconstruction method that recovers not only the lost fundamental harmonic but also the un-acquired higher harmonics for low-bandwidth acquisitions. Proposed method converges to the ideal (i.e., high bandwidth) MPI image in 3-4 iterations. In extensive simulations that incorporate measurement noise and nanoparticle relaxation effects, the proposed method displays improved image quality with respect to the regular x-space reconstruction scheme, with at least 6 dB improvement in peak signal-to-noise ratio (PSNR) metric. Finally, the proposed method is also demonstrated with imaging experiments on an in-house MPI scanner.
      Keywords
      Magnetic Particle Imaging
      Image Reconstruction
      Low-Bandwidth Signal Acquisition
      Permalink
      http://hdl.handle.net/11693/33203
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy