• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Molecular mechanism for adenosine regulation of dendritic cells

      Thumbnail
      Embargo Lift Date: 2020-06-05
      View / Download
      3.5 Mb
      Author(s)
      Kayhan, Merve
      Advisor
      Çekiç, Çağlar
      Date
      2017-05
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      227
      views
      79
      downloads
      Abstract
      Cell death, inflammation or other cellular stress factors cause accumulation of adenosine in the extracellular space. Adenosine has immunosuppressive effects on antigen presenting cells. However, molecular mechanisms for adenosine regulation of dendritic cells are poorly understood. Here we showed that adenosine receptor signaling promotes an antiinflammatory dendritic cell phenotype. While adenosine receptor signaling increased intracellular cAMP levels, phosphoactivation of major inflammatory pathways such as MAPKs, NF-κB and IRF3 were not affected. Adenosine’s effects were phenocopied by cAMP. Specific cAMP analogs for EPAC and PKA pathways indicated that adenosine activates both intracellular cAMP receptors to inhibit dendritic cell activation. Antiinflammatory cFOS and NR4A receptor family expressions were increased by adenosine or EPAC and PKA specific cAMP analogs. Furthermore, T cells incubated with the medium of dendritic cells, which prestimulated with adenosine receptor agonist and PKAEPAC specific cAMP analogs, produced less IFNγ. Overall our data suggest that dendritic cells are regulated by adenosine through both PKA and EPAC pathways and increased the expression of NR4A nuclear orphan receptors and cFOS. Our findings suggest that for effective targeting of adenosine or other cAMP-inducing receptors both PKA and EPAC are important to modulate immune responses
      Keywords
      Adenosine receptors
      cAMP signaling
      PKA
      EPAC
      Dendritic cells
      Permalink
      http://hdl.handle.net/11693/33191
      Collections
      • Dept. of Molecular Biology and Genetics - Master's degree 167
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy