• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bioactive peptide nanofibers for acceleration of burn wound healing

      Thumbnail
      Embargo Lift Date: 2018-05-12
      View / Download
      3.2 Mb
      Author
      Yergöz, Fatih
      Advisor
      Tekinay, Ayşe Begüm
      Date
      2017-05
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      123
      views
      178
      downloads
      Abstract
      Burn injuries are one of the most typical types of trauma worldwide, and the unique physiology of burn injuries requires the use of specialized therapeutic materials for treatment and makes the development of such materials especially challenging. Here, we report the use of synthetic, functional and biodegradable peptide nanofiber gels for improved healing of burn wounds to alleviate the progressive loss of tissue function at the post-burn wound site. These bioactive nanofiber gels form scaffolds which recapitulate the morphology and function of the natural extracellular matrix through peptide epitopes, which can trigger angiogenesis through significant affinity to basic growth factors. In this study, the angiogenesis-promoting properties of the bioactive scaffolds were utilized for the treatment of thermal burn model. Following the excision of necrotic tissue, bioactive gels and control solutions were applied topically onto the wound area. The wound healing process was evaluated at 7, 14 and 21 days following injury through histological observations, immunostaining and marker RNA / protein analysis. Bioactive peptide nanofiber treated burn wounds formed well-organized and collagen-rich granulation tissue layers, developed a greater density of newly formed blood vessels, and exhibited increased re-epithelialization and skin appendage formation with minimal crust formation. Overall, the heparin-mimetic peptide nanofiber gels increased the rate of repair of burn injuries and can be used as effective means of facilitating wound healing.
      Keywords
      Peptide Nanofiber
      Burn Injury
      Heparin
      Hydrogel
      Self-Assembly
      Neo-vascularization
      Extracellular matrix
      Permalink
      http://hdl.handle.net/11693/32990
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 140
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy