• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mixtures of charged-neutral superfluids

      Thumbnail
      View / Download
      1.2 Mb
      Author
      Ünal, Fatmanur
      Advisor
      Oktel, Mehmet Özgür
      Date
      2016-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      132
      views
      141
      downloads
      Abstract
      Motivated by the developments of artificial magnetic fields (AMFs) enabling cou- pling to the neutral particles of ultracold quantum gases, we have theoretically studied charged-neutral mixtures in various settings. The techniques that have been used to manufacture these AMFs are highly sensitive to the internal de- grees of freedom of the atoms, resulting in unequal coupling to the components of a mixture. We demonstrate the possible consequences of this unequal coupling by considering two different systems. First, we examine an impurity problem in a fermion background under an AMF coupling selectively to the impurity in a ring trap. We calculate the response of the system exactly by using Bethe Ansatz and argue that the AMF can be employed as a probe to analyze polaron formation. Secondly, we explore Bardeen-Cooper-Schrieffer theory of supercon- ductivity in the presence of a charge imbalance under an AMF. We analytically calculate the gap equation for any degree of asymmetry between the Landau level spectra of up and down spin particles, and show that the system displays reentrant superconductivity both in magnetic field and temperature. Apart from mixtures, we also investigate the non-equilibrium Hall response of a topological system. The strength of an AMF applied on a optical lattice can be suddenly changed without creating Eddy currents, allowing us to quench the system across a topological phase boundary. We report a fractional Hall response for the result- ing non-equilibrium system and discuss possible implementations for cold atom experiments.
      Keywords
      Ultacold atoms
      Artificial gauge fields
      Bethe Ansatz
      Polaron
      BCS theory
      High-field superconductivity
      Two-channel model
      Topological phases
      Haldane model
      Non-equilibrium hall response
      Permalink
      http://hdl.handle.net/11693/32598
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 73
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy