Show simple item record

dc.contributor.advisorAksoy, Selim
dc.contributor.authorAkçay, Hüseyin Gökhan
dc.date.accessioned2016-09-30T06:19:36Z
dc.date.available2016-09-30T06:19:36Z
dc.date.copyright2016-09
dc.date.issued2016-09
dc.date.submitted2016-09-28
dc.identifier.urihttp://hdl.handle.net/11693/32323
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Ph.D.): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2016.en_US
dc.descriptionIncludes bibliographical references (leaves 111-116).en_US
dc.description.abstractA challenging problem in remote sensing image interpretation is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are comprised of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of unknown number of primitives appearing in different primitive object layers in large scenes. The modeling process starts with example structures, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is reduced to the selection of multiple subsets of candidate regions from multiple hierarchical segmentations corresponding to different primitive object layers where each set of selected regions constitutes an instance of the example compound structures. The combinatorial selection problem is solved by joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements under the model learned from the example structures of interest. Moreover, we incorporate linear equality and inequality constraints on the candidate regions to prevent the co-selection of redundant overlapping regions and to enforce a particular spatial layout that must be respected by the selected regions. The constrained selection problem is formulated as a linearly constrained quadratic program that is solved via a variant of the primal-dual algorithm called the Difference of Convex algorithm by rewriting the non-convex program as the difference of two convex programs. Extensive experiments using very high spatial resolution images show that the proposed method can provide good localization of unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone.en_US
dc.description.statementofresponsibilityby Hüseyin Gökhan Akçay.en_US
dc.format.extentxix, 116 leaves : illustrations (some color), charts.en_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectObject detectionen_US
dc.subjectSpatial relationshipsen_US
dc.subjectContext modelingen_US
dc.subjectMarkov random fielden_US
dc.subjectMaximum entropy distributionen_US
dc.subjectGibbs samplingen_US
dc.subjectSwendsen-Wang samplingen_US
dc.subjectQuadratic programmingen_US
dc.subjectPrimal-dual algorithmen_US
dc.titleAutomatic detection of compound structures by joint selection of region groups from multiple hierarchical segmentationsen_US
dc.title.alternativeBileşik yapıların çoklu sıradüzensel bölütlemelerden bölge gruplarının ortaklaşa seçilmesiyle otomatik sezimien_US
dc.typeThesisen_US
dc.departmentDepartment of Computer Engineeringen_US
dc.publisherBilkent Universityen_US
dc.description.degreePh.D.en_US
dc.identifier.itemidB154165


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record