• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Automatic detection of compound structures by joint selection of region groups from multiple hierarchical segmentations

      Thumbnail
      View / Download
      84.4 Mb
      Author(s)
      Akçay, Hüseyin Gökhan
      Advisor
      Aksoy, Selim
      Date
      2016-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      197
      views
      60
      downloads
      Abstract
      A challenging problem in remote sensing image interpretation is the detection of heterogeneous compound structures such as different types of residential, industrial, and agricultural areas that are comprised of spatial arrangements of simple primitive objects such as buildings and trees. We describe a generic method for the modeling and detection of compound structures that involve arrangements of unknown number of primitives appearing in different primitive object layers in large scenes. The modeling process starts with example structures, considers the primitive objects as random variables, builds a contextual model of their arrangements using a Markov random field, and learns the parameters of this model via sampling from the corresponding maximum entropy distribution. The detection task is reduced to the selection of multiple subsets of candidate regions from multiple hierarchical segmentations corresponding to different primitive object layers where each set of selected regions constitutes an instance of the example compound structures. The combinatorial selection problem is solved by joint sampling of groups of regions by maximizing the likelihood of their individual appearances and relative spatial arrangements under the model learned from the example structures of interest. Moreover, we incorporate linear equality and inequality constraints on the candidate regions to prevent the co-selection of redundant overlapping regions and to enforce a particular spatial layout that must be respected by the selected regions. The constrained selection problem is formulated as a linearly constrained quadratic program that is solved via a variant of the primal-dual algorithm called the Difference of Convex algorithm by rewriting the non-convex program as the difference of two convex programs. Extensive experiments using very high spatial resolution images show that the proposed method can provide good localization of unknown number of instances of different compound structures that cannot be detected by using spectral and shape features alone.
      Keywords
      Object detection
      Spatial relationships
      Context modeling
      Markov random field
      Maximum entropy distribution
      Gibbs sampling
      Swendsen-Wang sampling
      Quadratic programming
      Primal-dual algorithm
      Permalink
      http://hdl.handle.net/11693/32323
      Collections
      • Dept. of Computer Engineering - Ph.D. / Sc.D. 84
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy