• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design and fabrication of micro end mills for the machining of difficult-to-cut materials

      Thumbnail
      Embargo Lift Date: 2018-01-01
      View / Download
      217.5 Mb
      Author
      Oliaei, Samad Nadimi Bavil
      Advisor
      Karpat, Yiğit
      Date
      2016-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      157
      views
      93
      downloads
      Abstract
      Micromilling is a cost-e ective method of fabricating miniaturized components with complex, three-dimensional features made from di cult-to-cut materials. Microcutting tools are exposed to harsh conditions during machining of such materials, which leads to short tool life and thus a ects the economics of the process. The aim of this thesis is to develop a systematic approach to the design and fabrication of high-precision micro-cutting tools. Machining characteristics of three di erent di cult-to-cut materials–stainless steel, titanium alloy, and silicon–have been investigated using experimental techniques. The results reveal the importance of interaction between tool micro geometry and work material mechanical properties. This observation leads to the development of tailored micro-end mills which are designed and fabricated based on the requirements of the specific machining task. This study also examines in detail built-up edge, an important but usually overlooked issue in micromachining of ductile materials, which a ects the process forces, tool wear, and tool deflections. The protective e ect of built-up edge has been exploited by creating micro-dimples on the tool surface using electrical discharge machining. Its positive influence on tool performance has been demonstrated. As for the micromachining of silicon, the flow of cut material around the cutting edge is paramount in tool design. A novel tool design for machining of silicon has been proposed and its e ectiveness has been validated through experiments. It has been shown that the selection of proper process parameters together with tailored tool design may increase the productivity of micromachining and improve surface quality and dimensional accuracy of micro-scale parts.
      Keywords
      Micromilling
      Micro cutting tool
      Titanium
      Polycrystalline diamond
      Ductile mode machining
      Permalink
      http://hdl.handle.net/11693/32243
      Collections
      • Dept. of Mechanical Engineering - Ph.D. / Sc.D. 1
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy