Utilization of reducible mixed metal oxides as promoters for the enhancement of sulfur regeneration in nsr catalysts

Limited Access
This item is unavailable until:
2017-01-01
Date
2016-07
Editor(s)
Advisor
Özensoy, Emrah
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Pt functionalized binary, ternary, and quaternary oxides (e.g. Pt/BaO/CeO2/ZrO2/Al2O3) were synthesized by wetness impregnation method and characterized by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, in-situ Fourier Transform Infrared (FTIR), and temperature programmed desorption (TPD) techniques. Effect of the synthesis sequence on the NOx storage capacity was investigated by synthesizing subsequently impregnated and co-impregnated ternary oxides. Influence of BaO loading on NOx uptake of quaternary oxides was examined by utilizing two different BaO loadings namely; 8 wt% and 20 wt% on co-impregnated ternary oxide, Pt10-10CeZrAl. Co-presence of CeO2-ZrO2 oxide domains leads to an increase in NOx storage. As BaO loading increases in quaternary oxides, thermal stabilities of nitrates and nitrites increase due to the formation of bulk/ionic nitrates. Although BaO impregnation on co-impregnated ternary oxides leads to a decrease in specific surface area (SSA) values due to sintering, NOx adsorption on BaO-functionalized quaternary oxides was found to be higher than the BaO deficient ternary oxides. Upon sulfur poisoning, formation of strongly bound bulk/ionic sulfate/sulfite functional groups on BaO containing catalysts result in a need for higher temperatures for complete sulfur regeneration. Comparison of the CeO2-ZrO2 promoted systems with that of the Pt/ 20 wt% Ba/Al2O3 conventional NOx Storage Reduction (NSR) catalyst suggests that ceria-zirconia promotion enhances the sulfur tolerance. In conclusion, in this study a new NSR catalyst namely, Pt20Ba10-10CeZrAl, which is promoted with reducible mixed metal oxides, was synthesized and characterized. This novel NSR catalyst formulation revealed favorable sulfur resistance with minor sacrifice in NOx storage ability.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)