• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Combinatorial targeting of PI3K and MAPK pathways by miR-564 to inhibit proliferation and invasion in breast cancer

      Thumbnail
      Embargo Lift Date: 2018-07-15
      View / Download
      18.6 Mb
      Author(s)
      Mutlu, Merve
      Advisor
      Şahin, Özgür
      Date
      2016-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      196
      views
      79
      downloads
      Abstract
      Breast cancer is among most common malignant tumors worldwide and one of the deadliest cancer types among women. Like other cancer types, dysregulation of signaling pathways is the major cause of uncontrolled cell proliferation, inhibition of apoptosis and eventually metastasis of breast cancer. PI3K and MAPK signaling pathways are among top most deregulated pathways promoting proliferation and invasion in cancer. Clinically approved kinase inhibitors targeting main regulators of these pathways have limited success due to cross-talks between these cascades and creating potential bypass mechanisms. MiRNAs (miRNAs) are 18-22 nucleotides long small non-coding RNAs, functioning by targeting one or more genes simultaneously. The extensive studies on miRNAs showed that they are highly associated with the control of cancer-related processes such as proliferation, migration and invasion. In this thesis, my aim was to identify a potential miRNA functioning as a dual inhibitor of both PI3K and MAPK pathways regulating oncogenic processes in breast cancer. Our previous miRNA mimic screen with reverse phase protein array (RPPA) has been reanalyzed regarding PI3K, MAPK and cell cycle protein regulations. Among top 50 candidate miRNAs, miR-564 was shown to act as a dual inhibitor of PI3K and MAPK pathways in breast cancer cells and inhibiting proliferation through G1 cell cycle arrest. Furthermore, I showed that miR-564 reduces migration and invasion of aggressive breast cancer cells via blocking epithelial-mesenchymal transition (EMT). Direct targeting of AKT2, GNA12, GYS1 and SRF genes in combination may play role in miR-564 being a dual inhibitor of these pathways. Moreover, both high miR-564 expression and low expression of miR-564 target genes were shown to be associated with reduced invasiveness of tumors as well as distant relapse-free survival of breast cancer patients. Overall, I showed that, in addition to being a dual inhibitor of PI3K and MAPK pathways by combinatorial targeting network of genes, miR-564 is a prognostic marker for breast cancer and a promising druggable target.
      Keywords
      miR-564
      PI3K pathway
      MAPK pathway
      AKT2
      GNA12
      GYS1
      SRF
      miRNA target network
      Breast cancer
      Permalink
      http://hdl.handle.net/11693/30160
      Collections
      • Dept. of Molecular Biology and Genetics - Master's degree 165
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy