Blocks of quotients of mackey algebras
Date
2015
Authors
Editor(s)
Advisor
Barker, Laurence J.
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
3
views
views
16
downloads
downloads
Series
Abstract
We review a theorem by Boltje and K¨ulshammer which states that under certain circumstances the endomorphism ring EndRG(RX) has only one block. We study the double Burnside ring, the Burnside ring and the transformations between two bases of it, namely the transitive G-set basis and the primitive idempotent basis. We introduce algebras Λ, Λdef and Υ which are quotient algebras of the inflation Mackey algebra, the deflation Mackey algebra and the ordinary Mackey algebra respectively. We examine the primitive idempotents of Z(Υ). We prove that the algebra Λ has a unique block and give an example where Λdef has two blocks.
Source Title
Publisher
Course
Other identifiers
Book Title
Degree Discipline
Mathematics
Degree Level
Master's
Degree Name
MS (Master of Science)
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English