• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Image restoration and reconstruction using projections onto epigraph set of convex cost fuchtions

      Thumbnail
      View / Download
      5.3 Mb
      Author(s)
      Tofighi, Mohammad
      Advisor
      Çetin, A. Enis
      Date
      2015
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      175
      views
      80
      downloads
      Abstract
      This thesis focuses on image restoration and reconstruction problems. These inverse problems are solved using a convex optimization algorithm based on orthogonal Projections onto the Epigraph Set of a Convex Cost functions (PESC). In order to solve the convex minimization problem, the dimension of the problem is lifted by one and then using the epigraph concept the feasibility sets corresponding to the cost function are defined. Since the cost function is a convex function in R N , the corresponding epigraph set is also a convex set in R N+1. The convex optimization algorithm starts with an arbitrary initial estimate in R N+1 and at each step of the iterative algorithm, an orthogonal projection is performed onto one of the constraint sets associated with the cost function in a sequential manner. The PESC algorithm provides globally optimal solutions for different functions such as total variation, `1-norm, `2-norm, and entropic cost functions. Denoising, deconvolution and compressive sensing are among the applications of PESC algorithm. The Projection onto Epigraph Set of Total Variation function (PES-TV) is used in 2-D applications and for 1-D applications Projection onto Epigraph Set of `1-norm cost function (PES-`1) is utilized. In PES-`1 algorithm, first the observation signal is decomposed using wavelet or pyramidal decomposition. Both wavelet denoising and denoising methods using the concept of sparsity are based on soft-thresholding. In sparsity-based denoising methods, it is assumed that the original signal is sparse in some transform domain such as Fourier, DCT, and/or wavelet domain and transform domain coefficients of the noisy signal are soft-thresholded to reduce noise. Here, the relationship between the standard soft-thresholding based denoising methods and sparsity-based wavelet denoising methods is described. A deterministic soft-threshold estimation method using the epigraph set of `1-norm cost function is presented. It is demonstrated that the size of the `1-ball can be determined using linear algebra. The size of the `1-ball in turn determines the soft-threshold. The PESC, PES-TV and PES-`1 algorithms, are described in detail in this thesis. Extensive simulation results are presented. PESC based inverse restoration and reconstruction algorithm is compared to the state of the art methods in the literature.
      Keywords
      Convex optimization
      epigraph of a convex cost functions
      projection onto convex sets
      total variation function
      `1-norm function
      denoising
      deconvolution
      compressive sensing
      Permalink
      http://hdl.handle.net/11693/30038
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy