Show simple item record

dc.contributor.advisorÖzbay, Ekmelen_US
dc.contributor.authorBulu, İrfanen_US
dc.date.accessioned2016-07-01T11:09:28Z
dc.date.available2016-07-01T11:09:28Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/11693/29953
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractApplications in areas such as photonics, antennas, imaging and optics require the control of propagation of electromagnetic waves and the control of emission of electromagnetic radiation. Achievements in three key research fields may provide the answer to these problems. These emerging research fields are metamaterials, photonic crystals and surface plasmons. This thesis will be about our work on metamaterials and photonic crystals. Metamaterials are a new class of artificial structures whose electromagnetic response can be described by effective permeability and permittivity functions that may attain negative values. I will present our results on the properties of a metamaterial structure that we proposed recently, the labyrinth structure. I will demonstrate that the labyrinth structure can be used to design a medium that exhibits negative permeability values within a certain frequency range. Moreover, I will explore the possibility of negative refraction and sub-wavelength focusing of electromagnetic waves by two and threedimensional labyrinth structure based left-handed mediums. Novel applications such as metamaterial based compact size antennas, ultra-small high-Q cavities will be also discussed. Another type of artificial electromagnetic structures are the photonic crystals. Photonic crystals can be described by a periodic modulation of the permittivity and/or the permeability of a medium. I will discuss two phenomena arising from the dispersion properties of photonic crystals and their possible applications. One of these phenomena is the existence of surfacebound electromagnetic modes and the other is the negative refraction effect. I will further show that the surface-bound modes can be used for applications such as beaming of electromagnetic waves and enhancement of transmission through sub-wavelength apertures. In addition, I will demonstrate that the negative refraction effect can be utilized to focus electromagnetic waves emitted from a finite size source.en_US
dc.description.statementofresponsibilityBulu, İrfanen_US
dc.format.extentxxii, 137 leaves, graphicsen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMetamaterialen_US
dc.subjectenhanced transmissionen_US
dc.subjectbeamingen_US
dc.subjectsurface modeen_US
dc.subjectsub-wavelength focusingen_US
dc.subjectnegative refractionen_US
dc.subjectplasma frequencyen_US
dc.subjectlabyrinth structureen_US
dc.subjectphotonic crystalen_US
dc.subject.lccQC793.5.P427 B858 2007en_US
dc.subject.lcshPhotons.en_US
dc.titleNovel approaches to control the propagation of electromagnetic waves : metamaterials and photonic crystalsen_US
dc.typeThesisen_US
dc.departmentDepartment of Physicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreePh.D.en_US
dc.identifier.itemidBILKUTUPB091030


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record